期刊文献+

凹形障碍全局路径规划的双蚁群完全交叉算法 被引量:16

An Double Ant Colony Algorithm in Concave Obstacle Environment for Global Path Planning
在线阅读 下载PDF
导出
摘要 为解决大量复杂凹形障碍环境中的路径规划问题,采用了计算机仿真技术,对双蚁群完全交叉算法进行了研究。通过对传统蚁群算法增加新型的距离改变启发因子,建立双蚁群完全交叉算法,并且融入最大最小蚁群算法思想,使蚁群算法应用在机器人路径规划领域,即使机器人环境中有大量复杂的凹形障碍,该算法仍能够规划出高质量的路径。仿真试验表明该算法得到最优路径率达到98%。 In order to solve the problems for path planning in concave obstacle environment, an double ant colony algorithm was completed using computer simulation technology. Combining the thought of MAX-MIN ant colony algorithm and adding new type heuristic gene based on distance change, we founded a complete cross double ant colony algorithm and applied it to robot path planning. Even when there are lots of concave obstacles in the robot environment, the algorithm still can get a high quality path and is suitable for robot path planning. The simulation results show that the best path rate obtained by the double ant colony algorithm is 98%.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2008年第7期149-153,共5页 Transactions of the Chinese Society for Agricultural Machinery
基金 安徽省科技攻关计划项目(项目编号:07010201011)
关键词 全局路径规划 双蚁群算法 凹形障碍 启发因子 Global path planning, Double ant colony algorithm, Concave obstacle, Heuristicgene
  • 相关文献

参考文献8

  • 1Benreguieg N I, Maaref H I, Barret H. Rusion of fuzzy agents for the reactive navigation of a mobile robot[C]//Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1997, 1: 388-394.
  • 2Kian Hsiang Low, Wee Kheng Leow, Ang M H Jr. Enhancing the reactive capabilities of integrated planning and control with cooperative extended Kohonen maps [ C] // Proceedings of the 2003 IEEE International Conference on Robotics &Automation, Taipei, Taiwan, 2003:3 428- 3 433.
  • 3Duan Qunjie, Zhang Mingjun. Research on real time path planning method for the underwater robot in unknown environment with random shape obstacle[C]//Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, Luoyang, China, 2006: 757-761.
  • 4朱庆保,张玉兰.基于栅格法的机器人路径规划蚁群算法[J].机器人,2005,27(2):132-136. 被引量:125
  • 5Dorigo M, Maniezzo V, Colori A. Ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics - part B, 1996, 26( 1 ) : 1 - 13.
  • 6樊晓平,罗熊,易晟,张航.复杂环境下基于蚁群优化算法的机器人路径规划[J].控制与决策,2004,19(2):166-170. 被引量:46
  • 7张美玉,黄翰,郝志峰,杨晓伟.基于蚁群算法的机器人路径规划[J].计算机工程与应用,2005,41(25):34-37. 被引量:48
  • 8江重光,傅培玉,孙仲宪,汪镭,吴启迪.智能蚁群算法[J].冶金自动化,2005,29(3):9-13. 被引量:8

二级参考文献25

  • 1张颖,吴成东,原宝龙.机器人路径规划方法综述[J].控制工程,2003,10(z1):152-155. 被引量:67
  • 2王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 3金飞虎,洪炳熔,高庆吉.基于蚁群算法的自由飞行空间机器人路径规划[J].机器人,2002,24(6):526-529. 被引量:52
  • 4Dorigo M,Gambardella L M,Middendorf M,et al. vip editorial: special section on ant colony optimization[A]. IEEE Transactions on Evolutionary Computation[C]. 2002,6(4): 317-319.
  • 5Dorigo M,Dicaro G. Ant colony optimization: a new meta-heuristic[A]. Proceedings of the 1999 Congress on Evolutionary Computation[C]. Washington,DC,USA: 1999,Vol.2. 1477. 474-477.
  • 6Wang C M,Soh Y C,Wang H,et al. A hierarchical genetic algorithm for path planning in a static environment with obstacles[A]. IEEE CCECE Canadian Conference on Electrical and Computer Engineering[C]. 2002,vol.3.1652-1657.
  • 7D'Amico A,Ippoliti G,Longhi S A. Radial basis function networks approach for the tracking problem of mobile robots[A]. Proceedings of the IEEE/ASME. International Conference on Advanced Intelligent Mechatronics[C]. 2001,vol.1. 498-503.
  • 8Weerayuth N,Chaiyaratana N.Closed-loop time-optimal path planning using a multi-objective diversity control oriented genetic algorithm[A]. Systems,Man and Cybernetics[C]. IEEE International Conference on,Vol.6:7.
  • 9Bruce J,Veloso M. Real-time randomized path planning for robot navigation[A]. Intelligent Robots and Systems 2002. IEEE/RSJ International Conference on,2002,Vol.3. 2383- 2388.
  • 10Dorigo M,Maniezzo V,Colorni A. Ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems ,Man and Cybernetics,Part B: Cybernetics,1996,26(1): 29-41.

共引文献199

同被引文献149

引证文献16

二级引证文献241

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部