期刊文献+

基于周期反转模式的表面暗电流抑制 被引量:2

Suppression of Surface Dark Current Based on Periodic Inverted Mode
原文传递
导出
摘要 为了抑制电子倍增CCD的表面暗电流,运用Shockley-Read-Hall理论解释了表面暗电流的产生过程,通过曲线拟合建立了表面暗电流的理论模型,定量分析了电子倍增CCD从反转模式切换到非反转模式后表面暗电流的恢复特征时间。根据这一时间特性提出了周期反转模式的概念,在信号积分期里对成像区时钟进行调制,加入周期反转脉冲,使器件以小于表面暗电流恢复特征时间的周期在反转与非反转模式之间切换。仿真结果表明,随着周期反转频率的提高,表面暗电流明显减小。当时钟周期为0.2 ms时,平均表面暗电流降低到0.051 nA/cm2,接近反转模式的水平,与理论分析完全一致,验证了周期反转模式的可行性。 In order to suppress surface dark current of electron multiplying CCDs, Shockley-Read-Hall theory is applied to describe the generation progress of surface dark current. The theoretical model of surface dark current is established by curve fitting. Recovery characteristic time of surface dark current is obtained through a quantitative analysis when the device is switched from inverted mode to non-inverted mode. Periodic inverted mode is proposed based on the timing character. Imaging clocks are modulated by periodic inverted pulses during signal integration. The device is switched from inverted mode to non-inverted mode at a period less than surface dark current recovery time. Simulation results show that surface dark current dramatically decreases as periodic inverted frequency increases. When the period equals 0.2 ms, average surface dark current is 0. 051 nA/cm^2 , approaching inverted mode level. The results are in good agreement with theoretical analysis and the feasibility of periodic inverted mode is proved.
作者 张闻文 陈钱
出处 《光学学报》 EI CAS CSCD 北大核心 2008年第7期1283-1286,共4页 Acta Optica Sinica
基金 国防基础科研项目(A2620060242) 装备预研项目(4040508011)资助课题
关键词 图像处理 微光成像 表面暗电流抑制 周期反转模式 电子倍增CCD image processing low-level light imaging suppression of surface dark current periodic inverted mode electron multiplying CCD
  • 相关文献

参考文献14

二级参考文献69

共引文献42

同被引文献24

  • 1王书宏,胡谋法,陈曾平.天文CCD相机的噪声分析与信噪比模型的研究[J].半导体光电,2007,28(5):731-734. 被引量:33
  • 2熊经武,朱建文.刘淑娥.线阵CCD暗电流和灵敏度实时校正.光学精密工程,1985.(6):63-68.
  • 3Jan T B, Edwin R, Herman I. P, e! td. An S-VHS compatible 1/3 " color FT-CCD imager with low dark current by surface pimping. IEEE Transactions on Electron Devices. 1995 . 42 ( 8 ) : 1449-1460.
  • 4Westh,ff R C. Burkle B E. Clark H R, el l. Low-dark-cun'e,t, back-illuminated charge-coupled-devices. Pnc of SPIE-IS& Eleclron- ic hnaging. Bellingham, WA : SPIE, 2009 . 7249:72490J-1-11.
  • 5Janesick J R. Scientiiic Cilarge-coupled Devices. Bellingham, WA: SPIE Press, 2001:606-623.
  • 6James J, Tom E, George F, et al. Charge-coupled device pinning technologies. Optical sensors and electronic photography. Belling- ham, WA: SPIE, 1989. 1071:153-169.
  • 7Barry E B, Stephanie A G. Dynamic suppression of interface-state dark current in buried-channel CCD' s. IEEE Transactions on Elec- tron Devices, 1991 . 38(2) :285-290.
  • 8韦晓茹,居戬之,朱亚一,吴建宏.CCD型光学多通道分析仪波长的标定[J].光学仪器,2008,30(2):26-30. 被引量:4
  • 9陈芳,孙利群,章恩耀.CCD致冷技术在小型光谱仪降噪中的应用[J].应用光学,2008,29(6):854-858. 被引量:8
  • 10乔闹生.CCD非线性及其校正研究[J].光子学报,2008,37(11):2305-2309. 被引量:4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部