期刊文献+

基于多传感器数据融合的鲁棒自适应滤波算法 被引量:4

A Robust Self-adaptive Filtering Algorithm Based on Multi-sensor Data Fusion
在线阅读 下载PDF
导出
摘要 针对具有多传感器量测的动态系统状态有效估计的问题,给出了一种基于多传感器数据融合的鲁棒自适应滤波算法。引入了虚拟量测的概念,实现对于量测数据的预处理,依据模糊集合理论中隶属度的性质定义了一种无需门限设定的数据间置信度函数,以充分提取于测量数据中互补和冗余信息。最后结合卡尔曼滤波中的贝叶斯递推估计原理,完成对于量测方差的在线自适应估计,进而提高了系统状态的滤波精度,并通过计算机仿真验证了算法的有效性。 Aiming at the issue of efficient state estimation for dynamic system with multiple sensors, a robust self-adaptive filtering algorithm based on multi-sensor data fusion is given. In the algorithm, the concept of virtual measurement is introduced for pre-processing of the measured data. In accordance with the feature of subordinate degree in fuzzy set theory, a confidence function among data without limit setting has been designed. Thus complementary and redundant information in measured data are fully extracted. Combining with the Bayesian recursive estimation principle in Kalman filtering, the on-line self-adaptive estimation of the measurement variance is implemented. The computerized simulation verified the effectiveness of the algorithm.
出处 《自动化仪表》 CAS 2008年第6期65-67,75,共4页 Process Automation Instrumentation
基金 广东省森林土壤墒情自动监测和预报系统研究项目(编号:2007B030402001)
关键词 数据融合 虚拟量测 隶属度 置信度函数 自适应滤波 贝叶斯估计 Data fusion Virtual measurement Subordinate level Confidence function Self-adaptive filtering Bayes estimation
  • 相关文献

参考文献9

二级参考文献33

  • 1汪颖进,张桂林.新的基于Kalman滤波的跟踪方法[J].红外与激光工程,2004,33(5):505-508. 被引量:13
  • 2陈俊勇,张骥,刘允诺,张江齐.我国对世界最高峰高程的第三次测量[J].地球科学进展,1994,9(4):91-93. 被引量:19
  • 3孙红岩,毛士艺,林品兴.多传感器数据分层融合的性质[J].电子学报,1996,24(6):55-61. 被引量:29
  • 4JamesOBerger 贾乃光译.Statistival Decision Theory and Bayesian Analysis[M].北京:中国统计出版社,1998.301-307.
  • 5John M.Richardson,Kenneth A.March Fusion of Muhisensor Data.The International Journal of Robotics Research,1988,7(6):78~96.
  • 6刘同明,数据融合技术及其应用,1998年
  • 7Luo R C,IEEE J Robotics Automation,1988年,4卷,4期,86页
  • 8何友 王国宏.多传感器信息融合及应用[M].北京:电子工业出版社,2001..
  • 9蒋正新 施国梁.矩阵理论及其应用[M].北京:北京航空航天大学出版社,1998.371-378.
  • 10Carlson N A,Berarducei M P.Federated filter simulation results[J].Navigation,1994,41(3):297-321.

共引文献215

同被引文献41

  • 1向培素.聚类算法综述[J].西南民族大学学报(自然科学版),2011,37(S1):112-114. 被引量:14
  • 2Wang J F, Dai Y P, Gao L. Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry[J]. Applied Energy, 2009, 86(6): 941-948.
  • 3赵家荣. 重点耗能行业能效对标指南[M]. 北京: 中国环境科学出版社, 2009.
  • 4Madlool N A, Saidur R, Rahim N A, et al. An overview of energy savings measures for cement industries[J]. Renewable and Sustainable Energy Reviews, 2013, 19(1): 18-29.
  • 5Baileya J A, Gordona R, Burtonb D, et al. Energy conservation on Nova Scotia farms: Baseline energy data[J]. Energy, 2008, 33(7): 1144-1154.
  • 6Joshi R, Banwet D K, Shankar R. A Delphi-AHP-TOPSIS based benchmarking framework for performance improvement of a cold chain[J]. Expert Systems with Applications, 2011, 38(8): 10170-10182.
  • 7Yalcintes M. An energy benchmarking model based on artificial neural network method with a case example for tropical climates[J]. International Journal of Energy Research, 2006, 30(14): 1158-1174.
  • 8Chung W, Hui Y V, Lam Y M. Benchmarking the energy efficiency of commercial buildings[J]. Applied Energy, 2006, 83(1): 1-14.
  • 9Wu L M, Chen B S. Modeling of energy efficiency indicator for semiconductor industry[C]//2007 IEEE International Conference on Engineering and Engineering Management. Piscataway, NJ, USA: IEEE, 2007: 822-826.
  • 10Kissock J K, Eger C. Measuring industrial energy savings[J]. Applied Energy, 2008, 85(5): 347-361.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部