期刊文献+

基于粗糙核Fisher鉴别分析的特征提取及其在发动机故障诊断中的应用 被引量:4

Feature extraction based on rough kernel Fisher discriminant analysis and its application on aeroengine fault diagnosis
在线阅读 下载PDF
导出
摘要 将粗糙集理论的属性约简与核Fisher鉴别分析方法结合起来,提出一种基于粗糙核Fisher鉴别分析的故障特征提取方法.首先采用粗糙集理论的属性约简删除与分类无关或关系不大的特征,降低输入特征维数,排除干扰特征的影响,减小了特征提取计算量;再采用核Fisher鉴别分析方法进一步提取非线性特征;最后将该方法应用于航空发动机滑油系统故障特征提取及故障识别中.结果表明:该方法获取的特征在提高分类正确率的同时,还有效地降低了输入特征维数,提高了分类效率,并且对分类器具有较强的适应性和鲁棒性. A new approach based on rough kernel fisher discriminant analysis (RKFDA) was proposed for aeroengine fault feature extraction, which combined rough set and kernel Fisher discriminant analysis. Firstly, rough set was used to exclude the features irrelevant to the fault; reduce the dimension of features, remove the effect of disturbance characteristics and cut down the cost of computation. Secondly, kernel Fisher discriminant analysis was employed on the obtained subset of features to extract the nonlinear features. Finally, fault extraction and recognition experiments in aeroengine lubricating oil system were carried out to test the performance of this method. The results show that the extracted features based on the proposed method could improve the recognition for aeroengine fault, and reduce efficiently the dimension of features with strong adaptability and robustness for various classifiers.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2008年第7期1346-1352,共7页 Journal of Aerospace Power
基金 国家自然科学基金(60672179) 军队重点科研基金(2003KJ01705)
关键词 航空发动机 故障诊断 特征提取 粗糙集 核FISHER鉴别分析 aeroengine fault diagnosis feature extraction rough set kernel Fisher discriminant analysis
  • 相关文献

参考文献9

二级参考文献24

  • 1曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1998..
  • 2郑宏.遗传算法在影像处理与分析中应用的研究:学位论文[M].武汉:武汉测绘科技大学,2000..
  • 3Pawlak Z. Rough sets[J]. International Journal of Information and Computer Science. 1982,11 (5) :341 -356.
  • 4Pawlak Z, Grzymala - Busse J, Slowinski R, et al. Rough sets[J]. Communications of the ACM. 1995,38 ( 11 ) :89 -95.
  • 5Pawlak Z. Rough sets and intelligent data analysis[ J ]. Information Sciences. 2002,147(1 -4): 1 -12.
  • 6Scholkopf B, Smola A, Mtiller K R. Nonlinear component analysis as a kernel eigenvalue problem [ J ]. Neural Computation,1998,10:1299-1319.
  • 7Mika S, Ratsch G, Weston J, et al. Fisher discriminant analysis with Kernels [ A ]. Neural Networks for Signal Processing IX[ C ]. 1999, 41-48.
  • 8Mika S, Ratsch G,Weston J,et al. Invariant feature extraction and classification in kernel spaces [ A ].Advances in Neural Information Processing Systems [ C ].2000(12):526-532.
  • 9Roth V, Steinhage V. Nonlinear discriminant analysis using kernel function [ A ]. Advances in Neural Information Proceeding Systems 12 [ C ]. MA.. MIT Press, 2000, 568-574.
  • 10Mika S, Smola A, Scholkopf B. An improved training algorithm for kernel fisher discriminants [ A ]. In Proceedings AISTATS [ C ]. Morgan Kaufmann,2001,13:98-104.

共引文献143

同被引文献49

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部