期刊文献+

基于贝叶斯网络的航班延误波及研究 被引量:21

Flight delay propagation research based on Bayesian net
在线阅读 下载PDF
导出
摘要 在民航业内,航班延误波及问题一直是影响航班延误的一个主要因素。基于贝叶斯网络(BN),讨论了在繁忙的枢纽机场,其航班延误的波及问题。在实验中使用的数据,皆来自国内某大型航空公司的真实记录。通过建立延误波及模型和贝叶斯网络模型,探讨了相关航班中,进港延误和航班取消对离港延误的影响。学习的结果显示了进港延误(Arrival-delay)对离港延误(Departure-Delay)的波及现象的存在;以及波及现象在不同情况下的程度不同;相应的可采取的应对方式亦不相同。其中航班取消是一种釜底抽薪的应对方法,可以在一定程度上削弱上述条件下的延误波及,其削弱程度与航班取消的架次有关。基于该研究可以在机场发生大规模延误时,提供一个基本的参考。 In the industry of civil aviation,delay propagation of flight always is a main factor that impacts the flight's delay.This paper discusses the delay propagation problem in busy hub-airport.All the data used in the experiments is come from real records of one large domestic airlines.Through producing the model of delay propagation and modeling the Bayesian Net,the impact of arrival-delay on departure-delay between related flights is discussed.The outcomes of learned Bayesian net show that the existence of propagation phenomenon from arrival-delay impacts onto departure-delay;the degrees under varied circumstance are different;and the according coping methods are different.Cancellation of flights is a drastic remedy of those coping methods.h can weaken the delay propagation to some extent,The weakened degree is related to the number of flights cancelled.A preliminary reference can be made based on this research for airports when there is large scale delays of flights happened.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第17期242-245,共4页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)(the National High- Tech Research and Development Plan of China under Grant No.2006AA12A106) 国家自然科学基金 the National Natural Science Foundation of China under Grant No.60572167)
关键词 贝叶斯网络 延误波及 进港延误 离港延误 航班取消 Bayesian net delay propagation arrival-delay departure-delay flight cancellation
  • 相关文献

参考文献7

二级参考文献22

  • 1何真,马湘山.政府对民航业的危机管理[J].中国民用航空,2004(7):14-17. 被引量:1
  • 2秦小虎,刘利,张颖.一种基于贝叶斯网络模型的交通事故预测方法[J].计算机仿真,2005,22(11):230-232. 被引量:21
  • 3徐野,赵海,苏威积,张文波.油藏预测中的贝叶斯网络融合方法[J].东北大学学报(自然科学版),2005,26(12):1145-1148. 被引量:3
  • 4郑恒,吴祈宗,汪佩兰,史爱芬.贝叶斯网络在火工系统安全评价中的应用[J].兵工学报,2006,27(6):988-993. 被引量:19
  • 5COOPER GF, HERSKOVITS E. A Bayesian Method for the induction of probabilistic networks from data [J]. Machine Learning,1992, 9(4) : 309 - 347.
  • 6SPIEGELHALTER DJ , LAURITZEN SL. Sequential Updating of Conditional Probabilities on Directed Graphical Structures[ J]. Networks, 1990, 20(5) : 579 - 605.
  • 7GOLMARD JL, MALLET A. Learning probabilities in causal trees from incomplete databases[J]. Artificial Intelligence, 1991, 5(1) :93 - 106.
  • 8LAURITZEN SL. The EM algorithm for graphical association models with missing data[J]. Computational Statistics and Data Analysis,1995,19(2) : 191 -201.
  • 9THIESSON B, MEEK C, HECKERMAN D. MSR-TR-99.31, Accelerating EM for large databases[R]. Microsoft Research, 2001.
  • 10NEAL R, HINTON G. A view of the EM algorithm that justifies incremental, sparse, and other variants[ A]. Learning in Graphical Models[ C]. Kluwer Academic Publishers, 1998. 355 -371.

共引文献32

同被引文献131

引证文献21

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部