期刊文献+

基于改进Elman网络的软测量建模方法 被引量:4

Soft sensor modeling method based on modified Elman neural network
在线阅读 下载PDF
导出
摘要 针对静态前馈网络和Elman网络在软测量建模中的不足,提出了一种新的改进的Elman网络模型,并将此模型应用于精馏塔出口成分含量的软测量建模中。实验模拟结果表明:改进的Elman网络模型具有更高的预测精度和较快的收敛速度,能够更好地实现精馏塔出口成分含量的软测量建模,为进一步实现产品质量控制提供了保证。 Aimed at the shortcomings of static feedforward network and Elman network in soft sensor modeling,a new modified Elman neural network is proposed,and applied to soft sensor modeling of Rectifying Column.Simulation results show that the modified Elman neural network has better precision and faster convergence rate.It performances better in soft sensor modeling of Rectifying Column,and provides the guarantee for the production quality control.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第16期233-235,共3页 Computer Engineering and Applications
关键词 改进的Elman神经网络 软测量 精馏塔 建模 modified Elman neural network soft sensor Rectifying Column modeling
  • 相关文献

参考文献8

二级参考文献31

  • 1Senjyu T, Yokoda S, Uezato K. A study on high-efficiency drive of ultrasonic motors. Electric Power Components and Systems,2001,29(3 ): 179- 189.
  • 2Uehino K. Piezoelectric motors: Overview. Smart Materials and Structures, 1998,7(3):273-285.
  • 3Hagood NW, McFarland AJ. Modeling of a piezoelectric rotary ultrasonic motor. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1995,42(2):210--224.
  • 4Senjyu T, Miyazato H, Yokoda S, Uezato K. Speed control of ultrasonic motors using neural network. IEEE Transactions on Power Electronics, 1998,13(3):381-387.
  • 5Lin F J, Wai R3, Shyu KK, Liu TM. Recurrent fuzzy neural network control for piezoelectric ceramic linear ultrasonic motor drive.IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2001,48(4):900-913.
  • 6Senjyu T, Yokoda S, Uezato K. Speed control of ultrasonic motors using fuzzy neural network. Journal of Intelligent Fuzzy System,2000,8(2):135-146.
  • 7Lin F J, Wai R J, Hong CM. Recurrent neural network control for LCC-resonant ultrasonic motor drive. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2000,47(3):737-749.
  • 8Elman JL. Finding structure in time. Cognitive Science, 1990,14(2):179-211.
  • 9Pham DT, Liu X. Dynamic system modeling using partially recurrent neural networks. Journal of Systems Engineering,1992,2(2):90--97.
  • 10Pham DT, Liu X. Training of Elman networks and dynamic system modeling. International Journal of Systems Science, 1996,27(2):221 -226.

共引文献147

同被引文献34

  • 1张丽平,俞欢军,陈德钊,胡上序.粒子群优化算法的分析与改进[J].信息与控制,2004,33(5):513-517. 被引量:86
  • 2赵梅娟,王钟羡.GM(1,1)建模方法的改进及其应用[J].数学的实践与认识,2006,36(11):110-116. 被引量:11
  • 3席剑辉,韩敏.多重分支时间延迟神经网络的混沌预测研究[J].信息与控制,2007,36(2):181-186. 被引量:6
  • 4Tham M T,Morris A J,Montague G A.Soft-sensors for process estimation and inferential control[J].J Process Control,1991,1(1):3-14.
  • 5Vapnik V.An overview of statistical learning theory[J].IEEE Transactions on Neural Networks,1999,10(5):988-999.
  • 6Suykens J A K,Vandewalle J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 7Suykens J A K,Vandewalle J,Moor B D.Optimal control byleast squares support vector machines[J].Neural Networks,2001,14(1):23-25.
  • 8Mallat S G.A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1989,11 (7):674-693.
  • 9Daubechies l.Orthonormal bases of compactly supported wavelets[J].Communication on Pure and Applied Mathematics,1988,41 (11):909-996.
  • 10Lin S W,Ying K C,Chen S C,et al.Particle swarm optimization for parameter determination and feature selection of support vector machines[J].Expert Systems with Applications,2008,35(4):1817-1824.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部