期刊文献+

一种基于粗糙集增量式规则学习的问题分类方法研究 被引量:8

Question Classification with Incremental Rule Learning Algorithm Based on Rough Set
在线阅读 下载PDF
导出
摘要 该文提出一种基于粗糙集增量式规则自动学习来实现问题分类的方法,通过深入提取问句特征并采用决策表形式构建训练语料,利用机器学习的方法自动获取分类规则。与其他方法相比优势在于,用于分类的规则自动生成,并采用粗糙集理论的简约方法获得优化的最小规则集;首次在问题分类中引入增量式学习理念,不但提高了分类精度,而且避免了繁琐的重新训练过程,大大提高了学习速度,并且提高了分类的可扩展性和适应性。对比实验表明,该方法分类精度高,适应性好。在国际TREC2005Q/A实际评测中表现良好。 This paper presents a method on automatic question classification through incremental rule learning based on rough set theory. The core of the method is appling the machine learning approach to gain classified rules automatically through extract the features of query sentence thoroughly, and the decision table is used to construct the training collection. Comparing with the alternative means, the superiority is that it acquires the classified rule automatically and uses the rough set method to obtain the optimized smallest rule set. Especially, the incremental learning is induced to improve the precision and avoid the tedious re-training process. The performance of the approach is promising, when tested on opposite test. Meanwhile, the method obtains a very good result in the international TREC2005 Q/A track.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第5期1127-1130,共4页 Journal of Electronics & Information Technology
基金 国家自然科学基金重点项目(60435020) 国家自然科学基金项目(60504021) 国家863目标导向类课题(2006AA01Z197)资助课题
关键词 粗糙集 问题分类 增量式学习 决策表 特征选择 Rough set Question classification Incremental learning Decision table Feature selection
  • 相关文献

参考文献11

  • 1Marius A Pasca. High-performance, open-domain question answering from large text collections. [Ph.D. dissertation], University of Southern Met hodist, 2001.
  • 2Cody Kwok, Oren Etzioni, and Daniel. Scaling question answering to the web [J]. ACM Trans. on Information Systems, 2001, 9(3): 242-262.
  • 3Shaw M L G and Gaines B R. Question classification in rule-based systems [C]. Proceedings of Expert Systems'86, The 6Th Annual Technical Conference on Research and development in expert systems, Brighton, 1987: 123-131.
  • 4张宇,刘挺,文勖.基于改进贝叶斯模型的问题分类[J].中文信息学报,2005,19(2):100-105. 被引量:47
  • 5Taira Jun Suzuki, Sasaki Yutaka, and Maeda Eisaku. Question classification using HDAG kernel [C]. ACL Workshop on Mulitilingual Summarization and Question Answering, Sapporo, 2003: 61-68.
  • 6Li Xin and Roth Dan. Learning question classifier [C]. In Proceedings of the 19th International Conference on Computational Linguistics (COLING'02). Talpei, 2002: 556-562.
  • 7Zhang Dell and Lee Wee Sun. Question classification using support vector machines [C]. Proceedings of the 26th annual international ACM SIGIR Conference on Research and Development in Information Retrieval, New York, ACM Press, 2003: 26-32.
  • 8王国胤,于洪,杨大春.基于条件信息熵的决策表约简[J].计算机学报,2002,25(7):759-766. 被引量:601
  • 9于洪,杨大春,吴中福.基于Rough set理论的增量式规则获取算法[J].小型微型计算机系统,2005,26(1):36-41. 被引量:4
  • 10Pawlak Z. Rough set: theoretical aspects and reasoning about data [M]. Dordrecht, Kluwer Academic Publishers, 1991.

二级参考文献22

  • 1王国胤.Rough集理论和知识获取[M].西安:西安交通大学出版社,2001..
  • 2曾黄麟.粗集理论及其应用-关于数据推理的新方法(修订版)[M].重庆:重庆大学出版社,1998..
  • 3.[EB/OL].http://www. ics. uci. edu/-mlearn/MLRepository.,.
  • 4VladimirN.Vapnik(著) 张学工(译).统计学习理论的本质[M]:第一版[M].北京:清华大学出版社,2000.85-155.
  • 5Pawlak Z. Rough set[J]. International Journal of Computer and Information Sciences, 1982, 11 (5) : 341-356.
  • 6Pawlak Z. On learning-a rough set approach[C]. Proc. Intl.Symp. On Computeation Theory and Lecture Notes in Computer Science, G. Goos, et al. (eds.), 1984,208,197-227.
  • 7Yu H, Wang G, Yang D. Knowledge reduction algorithms based on rough set and conditional information entropy [J].Proceedings of Spie.. Data Mining and Knowledge Discovery:Theory,Tool, and Technology IV, 4730 : 422-431.
  • 8Godin R, Missaoui R, alaui H. Incremental concept formation algorithms based on galoies (concept) lattics[J]. Computational Intelligence, 1995,11 (2) : 246-267.
  • 9Pawlak Z. Rough set,theoretical aspects and reasoning about data[[K]. Kluwer Academic Publishers, 1991.
  • 10Pawlak Z. Rough set[J]. International Journal of Computer and Information Sciences, 1982, 11 (5): 341-356.

共引文献648

同被引文献126

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部