期刊文献+

黄曲霉毒素B1降解菌株的筛选及鉴定 被引量:69

Screening and Identification of Aflatoxin B1 Degradation Strains
在线阅读 下载PDF
导出
摘要 【目的】筛选能降解黄曲霉毒素B1(AFB1)的细菌,以期在该毒素的生物脱毒中得到应用。【方法】以香豆素为惟一碳源和能源进行AFB1降解菌株的初筛,之后将初筛的10株菌分别降解浓度为100μg·kg-1的AFB1。【结果】筛选出的NMO-3菌株降解AFB1能力达85.7%,显著高于其它菌株(P<0.01)。从形态、生理生化反应以及16SrDNA序列比对等方面分析,最终确定NMO-3菌株为嗜麦芽窄食单胞菌(Stenotrophomonas sp.)。【结论】利用香豆素作为惟一碳源和能源筛选出了黄曲霉毒素降解菌株,后期试验证明活菌制剂在2.56×1010CFU/ml剂量以下不会引起急性毒性反应,用65%硫酸铵提取的蛋白(酶)具有AFB1降解能力。 [ Objective ] The aim of this text was mainly to find the bacteria to degrade aflatoxin B 1 and realize the application of biological degradation on AFB 1. [ Method ] Using cumarin as the carbon source and energy to have the first screening, and let the ten strains which were firstly screened out to degrade aflatoxin B 1 (100 μg·kg^-1). [ Result ] The strain NMO-3 was screened out from ten strains, the degradation ratio of AFB 1 reached 85.7%, which was obviously higher than others (P〈0.01). With the analysis of colony morphology, physiological and biochemical experiments, and 16S rDNA gene sequence, the strain NMO-3 was finally identified as Stenotrophomonas sp. [Conclusion] Using cumarin as the carbon source and energy could screen out the AFB1 degradation strains. The microbial cells did not bring acute toxic effects when the biomass preparation rate was lower than 2.56 × 10^10CFU/ml. The multienzyme obtained by using 65% deposition ammonium sulfate could degrade AFB 1.
出处 《中国农业科学》 CAS CSCD 北大核心 2008年第5期1459-1463,共5页 Scientia Agricultura Sinica
基金 国家自然科学基金项目(30571353)
关键词 黄曲霉毒素B1 生物脱毒 嗜麦芽窄食单胞菌(Stenotrophomonas sp.) 鉴定 Aflatoxin B 1 Biological degradation Stenotrophomonas sp. Identification
  • 相关文献

参考文献20

  • 1Cotty P J, Bhatnagar D. Variability among atoxigenic Aspergillus flavus strains in ability to prevent aflatoxin contamination and production of aflatoxin biosynthetic pathway enzymes. Applied and Environmental Microbiology, 1994, 60:2248-2251
  • 2Kurtzman C P, Horn B W, Hesseltine C W. Aspergillus nomius, a new aflatoxin producing species related to Aspergillus flavus and Aspergillus tamari. Antoine Leeuwenhoek, 1987, 53: 147-158.
  • 3Massey T E, Stewart R K, Daniels J M, Liu L. Biochemical and molecular aspects of mammalian susceptibility to aflatoxin B1 carcinogenicity. Proceedings of the Society for Experimental Biology and Medicine, 1995, 208:213-227
  • 4Doyle M P, Applebaum R S, Brackett R E, Marth E H. Physical, chemical and biological degradation of mycotoxins in foods and agricultural commodities. Food Protection, 1982, 45: 964-971.
  • 5Teniola O D, Addo P A, Brost I M, Farber P, Jany K D, Alberts J E van Zyl W H, Steyn P S, Holzapfel W H. Degradation of aflatoxin B1 by cell-free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthenivorans sp. nov DSM44556T. International Journal of Food Microbiology, 2005, 105: 111-117.
  • 6Liu D L, Yao D S, Liang R, Ma L, Cheng W Q, Gu L Q. Detoxification of aflatoxin B1 by enzymes isolated from Armillariella tabescens. Food and Chemical Toxicology, 1998, 36: 563-574.
  • 7Liu D L, Yao D S. Production, purification, and characterization of an intracellular aflatoxin-detoxifizyme from Armillariella tabescens (E-20). Food and Chemical Toxicology, 2001, 39(5): 461-466.
  • 8Desheng Q, Fan L, Yanhu Y, Niya Z. Adsorption of aflatoxin B1 on montmorillonite. Poultry Science, 2005, 85:959-961.
  • 9Cole R J, Domer J W. Extraction of aflatoxins from naturally contaminated peanuts with different solvents and solvent/peanut ratios. Journal of AOAC International, 1994, 77: 1509-1511.
  • 10Gowda N K S, Suganthhi R U, MaLathi V, Raghavendra A. Efficacy of heat treatment and sun drying of aflatoxin- contaminated feed for reducing the harmful biological effects in sheep. Animal Feed Science and Technology, 2007, 133: 167-175.

二级参考文献63

  • 1聂麦茜,张志杰,雷萍.优势短杆菌对多环芳烃的降解性能[J].环境科学,2001,22(6):83-85. 被引量:24
  • 2Mcnally D L, Michelcic J R, Lueking D R. Polycyclic aromatic hydrocarbon degradation microorganisms in Great Lakes sediments[J]. Journal of Great Lakes Research, 1998.24:392- 403.
  • 3Baird C. Environmental Chemistry [M]. New York: W.H. Freeman and Company Press, 1995. 276- 278.
  • 4Stegeman J J, Lech J J. Cytochrome p- 450 monooxyge- nase system in aquatic species: Carcinogen metabolism and biomarkers for carcinogen and pollutant exposure[J]. En- vironmental Health Perspectives, 1991, 90:101- 109.
  • 5Varanas U. Metabolism of Polycyclic Aromatic Hydrocar- bons in the Aquatic Environment[M]. Boca Raton, FL, USA:CRC Press Inc, 1989. 26- 32.
  • 6Gibson D T, Mahadevan V, Jerina R M, et al.Oxidation of the carcinogens benzo[a]pyrene and dibenz[a,h]an- thracene to dihydrodiols by a bacterium[J]. Science, 1975,189: 295- 297.
  • 7Cerniglia C E. Biodegradation of polycyclic aromatic hy- drocarbon: a review[J]. Biodegradation, 1992, 3: 351- 368.
  • 8Harayama S. Polycyclic aromatic hydrocarbon bioremedia- tion design[J]. Current Opinion in Biotech, 1997, 8: 268- 273.
  • 9Bauer J E, Capone D G. Effects of co- occuring aromatic hydrocarbons on degradation of individual polycyclic aro- matic hydrocarbons in marine sediment slurries[J].Appl Environ Microb, 1988, 54:1649- 1655.
  • 10Thomas J M. Microbial ecology of the subsurface at an abandoned creosote waste site[J]. Journal of Industrial Microbiology, 1989,4: 109- 120.

共引文献51

同被引文献814

引证文献69

二级引证文献474

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部