期刊文献+

基于自回归隐半马尔可夫模型的设备故障诊断 被引量:4

Equipment Fault Diagnosis Using Auto-regressive Hidden Markov Models
在线阅读 下载PDF
导出
摘要 提出了一种新的隐马尔可夫模型(HMM)拓展模型自回归隐半马尔可夫过程(Auto-Regressive Hidden Semi-Markov Model,AR-HSMM),并给出了模型参数的推导和相应的"前向-后向"算法.与传统的HMM相比,AR-HSMM有以下两个优点:①把传统HMM所假设的隐藏状态分布改进为显式高斯分布;②改进了传统HMM假设各观测变量相互独立的问题,通过在各观测变量之间建立联系,从而使之更加符合实际情况.在液压泵故障诊断中的应用实例表明,AR-HSMM在故障诊断中是非常有效的. This paper presented a new model AR-HSMM (Auto-Regressive Hidden Semi-Markov Model) that relaxes some limits of traditional HMM and developed the parameters re-estimation formula and modified "Forward-Backward" algorithm. Compared with the traditional HMM, the AR-HSMM has two significant advantages:① It modifies the unrealistic exponential distribution for hidden states by using explicit Gaussian distribution; ② Instead of the independence assumption between observations, AR-HSMM employs auto-regression to describe the correlations between observations. The proposed model was validated by a real bump diagnosis example. Compared with the traditional HMM, the promising results from AR-HSMM show that the proposed method is effective.
作者 杨志波 董明
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2008年第3期471-474,479,共5页 Journal of Shanghai Jiaotong University
基金 上海浦江计划资助项目(05PJ14067)
关键词 故障诊断 自回归隐半马尔可夫模型 隐马尔可夫模型 fault diagnosis auto-regressive hidden semi-Markov model hidden Markov model
  • 相关文献

参考文献12

  • 1Atlas L,Ostendorf M,Bernard G D.Hidden Markov models for monitoring machining tool-wear[J].Acoustics,Speech,and Signal Processing,2000,6(6):3887-389O.
  • 2McClellan H P,Mechanical J H.System monitoring using hidden Markov models[C]//IEEE International Conference on Acoustics Speech and Signal Processing.Montreal:IEEE,1991:1697-1700.
  • 3Baruah P,Chinnam R B.HMMs for diagnostics and prognostics in machining processes[J].International Journal of Production Research,2005,43 (6):1275-1293.
  • 4Zhang Xiaodong,Xu R,Kwan C.An integrated approach to hearing fault diagnostics and prognostics[C]// American Control Conference,Proceedings of the 2005.IEEE,2005,4:2750-2755.
  • 5Bunks C,Mccarthy D.Condition-based maintenance of machines using hidden Markov models[J].Mechanical Systems and Signal Processing,2000,14:597-612.
  • 6Ying J,Kirubarajan T,Pattipati K R.A hidden Markov model-based algorithm for online fault diagnosis with partial and imperfect tests[J].Systems,Man and Cybernetics,Part C:Applications and Reviews,IEEE Transactions on,2000,30(4):463-473.
  • 7Hatzipantelis E,Murray A,Penman J.Comparing hidden Markov models with artificial neural network architectures for condition monitoring applications[J].Artifical Neural Networks,1995,26 (28):369-374.
  • 8丁启全,冯长建,李志农,吴昭同.旋转机械启动全过程DHMM故障诊断方法研究[J].振动工程学报,2003,16(1):41-45. 被引量:25
  • 9柳新民,邱静,刘冠军.基于连续高斯密度混合HMM的滚动轴承故障诊断研究[J].机械传动,2005,29(1):7-10. 被引量:5
  • 10李志农,吴昭同,丁启全,何永勇,褚福磊.小波和FHMM在旋转机械升降速过程中的应用[J].控制工程,2003,10(4):299-301. 被引量:4

二级参考文献13

  • 1Ghahramani Z, Jordan M. Factorial hidden Markovmodels[J]. Machine Learing, 1997, 29:245-275.
  • 2Logan B, Moreno P. Factorial HMMs for acoustic modeling[A]. Acoustics Speech and Signal[C]. Proceedings of the IEEE International Conference,1998, 2(S) : 813-816.
  • 3L. Atlas, M. Ostendorf, G.D. Bernard. Hidden Markov Models for Monitoting Machining Tool- Wear. IEEE International Conference on Acoustics,Speech, and Signal Processing, Vol. 6, 2000:3887 ~ 3890.
  • 4L.P. Heck, J.H. McClellan. Mechanical System Monitoring using HMMs.IEEE International Conference on Acoustics, Speech, and Signal Processing Vol .3, 1991:1697 ~ 1700.
  • 5J. Ying, T. Kirubarajan, K.R. Pattipati. A hidden Markov model - based algorithm for online fault diagnosis with partial and imperfect tests, IEEE Midnight - Sun Workshop on Soft Computing Methods in Industrial Applications,SMCia/99, 1999:103 ~ 108.
  • 6Hasan OCAK, Kenneth A. LOPARO. A New Bearing Fault Detection and Diagnosis Scheme Based on Hidden Markov Modeling of Vibration Signals,IEEE International Conference on Acoustics, Speech, and Signal Processing,Vol. 5 , 2001:3141 ~3144.
  • 7E. Hatzipuntelis, A. Murray, J. Penman . Comparing hidden Markov models with artificial neural network architectures for condition monitoring applications, Fourth International Conference on Artificial Neural Networks, Jun 1995:369~374.
  • 8Lawrance R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, Proceedings of the IEEE, Vol. 77, No.2, Febmary 1989.
  • 9秦前清 扬宗凯.实用小波分析[M].西安:西安电子科技大学出版社,1998..
  • 10黄文虎 夏松波 刘瑞岩 等.设备故障诊断原理、技术及应用[M].北京:科学出版社,1997..

共引文献31

同被引文献43

  • 1蔡铁,朱杰.小波阈值降噪算法中最优分解层数的自适应选择[J].控制与决策,2006,21(2):217-220. 被引量:45
  • 2王小华,荣命哲,吴翊,刘定新.高压断路器故障诊断专家系统中快速诊断及新知识获取方法[J].中国电机工程学报,2007,27(3):95-99. 被引量:53
  • 3刘爱伦,袁小艳,俞金寿.基于KPCA-SVC的复杂过程故障诊断[J].仪器仪表学报,2007,28(5):870-874. 被引量:16
  • 4Miao Q, Makis V. Condition monitoring and cla.ssification of rotating machinery using wavelets and hidden Markov models[J]. Mechanical Systems and Signal Processing, 2007, 21:840 -855.
  • 5Zhang X, Xu R, Kwan C, et at. An integrated approach to bearing fault diagnostics and prog nosties[J]. Proceedings of the 2005 American Control Conference, 2005, 4: 2750-2755.
  • 6Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proc of the IEEE, 1989, 77(2): 257-286.
  • 7Christer A H, Wang W and Sharp J M. A State Space Condition Monitoring Model for Furnace Erosion Prediction and Replacement. European Journal of Operational Research. 1997, 101: 1-14.
  • 8TAN C M, RAGHAVAN N. A framework to practical pre- dictive maintenance modeling for multi-state systems[J]. Reli- ability Engineering and System Safety, 2008, 93 (8): 1138-1150.
  • 9QIU Hal, LEE J, LIN Jing, et al. Robust performance degra- dation assessment methods for enhanced rolling element bear- ing prognosis[J]. Advanced Engineering Informatics, 2003,17 (3/4) : 127-140.
  • 10ZHOU Xiaojun, XI Lifeng, LEE J. Reliability-centered pre- dictive maintenance scheduling for a continuously monitored system subject to degradation[J]. Reliability Engineering and System Safety, 2007,92 (4) : 530-534.

引证文献4

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部