摘要
On the investigation of biomimetic drag-reducing surface, direct replication of the firm scarfskins on low-resistance creatures to form biomimetic drag-reducing surfaces with relatively vivid morphology relative to the living prototype is a new attempt of the bio-replicated forming technology.Taking shark skin as the bio-replication template, the hot embossing method was applied to the microreplication of its outward morphology. Furthermore, the skins were jointed together to form the drag-reducing surface in large area. The results of the resistance measurements in a water tunnel according to the flat-plate sample pieces have shown that the biomimetic shark-skin coating fabricated by the bio-replicated forming method has significant drag reduction effect, and that the drag reduction efficiency reached 8.25% in the test conditions.
On the investigation of biomimetic drag-reducing surface, direct replication of the firm scarfskins on low-resistance creatures to form biomimetic drag-reducing surfaces with relatively vivid morphology relative to the living prototype is a new attempt of the bio-replicated forming technology. Taking shark skin as the bio-replication template, the hot embossing method was applied to the micro-replication of its outward morphology. Furthermore, the skins were jointed together to form the drag-reducing surface in large area. The results of the resistance measurements in a water tunnel according to the flat-plate sample pieces have shown that the biomimetic shark-skin coating fabricated by the bio-replicated forming method has significant drag reduction effect, and that the drag reduction efficiency reached 8.25% in the test conditions.
基金
the National Natural Science Foundation of China (Grant No. 50775006)
the National Defense Fundamental Research Foundation of China (Grant No. D2120060002)
关键词
鲨鱼皮
生物复制成型
热压纹
生物学
shark skin, biomimetic drag-reducing surface, bio-replicated forming, hot embossing