期刊文献+

多水平结构方程模型及其应用 被引量:7

Multilevel Structural Equation Model and its Application
暂未订购
导出
摘要 目的探讨如何利用多水平结构方程模型实现对系统结构数据进行分析。方法以医师职业紧张数据为实例,分别采用MLwiN与LISREL软件例证了多水平结构方程模型的构建和分析原理。结果高水平协方差矩阵提示数据具有系统结构特征,模型分析结果提示紧张反应与职业任务成正比,与应对方式成反比,结果符合专业解释。结论当系统结构特征突出时,采用多水平结构方程模型应趋合理。 Objective To study multilevel structural equation model for hierarchical structure data. Methods Occupational stress data were analyzed and MLwiN and LISREL statistics package were utilized to exemplify Multilevel structural equation model. Results Covariance matrix of high level implied the data had the character of hierarchical structure. Restilts of model showed that the personal strain increased with Occupational Roles and decreased with Personal Resources. Conclusion Multilevel structural equation model make the parameter estimation more reasonable for hierarchical structure data.
机构地区 山西医科大学
出处 《中国卫生统计》 CSCD 北大核心 2008年第2期120-123,共4页 Chinese Journal of Health Statistics
基金 国家自然科学基金资助项目(30200236)
关键词 多水平模型 结构方程模型 职业紧张 Multilevel model Structural equation model Occupational stress
  • 相关文献

参考文献8

  • 1张岩波,刘桂芬,卢莉,郑建中,徐秀娟,药红梅.多水平CFA模型在构念效度评价中的应用[J].中国卫生统计,2006,23(1):24-26. 被引量:2
  • 2Mathilda du toit, Stephen du Toit. Interactive Lisrel: User's Guide, Scientific Software International Inc, 2001, 254-261.
  • 3George AM, Randall ES. New developments and techniques in structural equation modeling, Lawrence Erlbaum Associates. Publishers Mahwah, New Jersey London, 2001,89-129.
  • 4Bentler PM. Comparative fit indexes in structural models. Psychological Bulletin, 1987, 107,238-246.
  • 5李健,兰亚佳,王治明,王绵珍,王明炽,刘国清.职业紧张量表(OSI-R)信度与效度验证[J].中华劳动卫生职业病杂志,2001,19(3):190-193. 被引量:346
  • 6Goldstein H, Browne WJ. Multilevel Factor Analysis models for continuous and discrete data. 2003.
  • 7Ronald H. Multilevel Modeling With SEM. In: George. Amarcoulides, Randall E. Schumacker. New Developments and Techniques in Structural Equation Modeling. Lawrence Erlbaum Associates. Puberlisher. Mahwah, New Jersey. London, 2001, 89-127.
  • 8Goldstein H, Browne WJ. Multilevel factor analysis modeling using Markov Cha/n Monte Carlo (MCMC) estimation. Latent Variable and Latent Structure Model, Marcoulides G. and Moustaki I. London, New- Jersey; Lawrence Erlbaum, 2002, 225-243.

二级参考文献9

共引文献346

同被引文献223

引证文献7

二级引证文献209

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部