期刊文献+

正交曲线坐标系的应变张量转换 被引量:9

CONVERSION OF STRAIN TENSOR MATRICES BETWEEN TWO ORTHOGONAL CURVILINEAR COORDINATES
在线阅读 下载PDF
导出
摘要 论证任何一种正交曲线坐标系中的度量张量矩阵皆为对角矩阵,即在该坐标系中的该点的活动标架彼此正交,为直角坐标系;证明可采用直角坐标系的应变张量公式计算正交曲线坐标系的应变张量矩阵;并给出了正交曲线坐标系应变张量转换的普适方法和ITRF与WGS84之间应变张量矩阵转换的表达式。 It is expounded and proved that all metric tensor matrixes in any orthogonal curvilinear coordinate system are diagonal matrixes, i. e. the moving trihedrons at the point in the coordinate system are rectangular and orthgonal with each other, and then it is found out that the strain tensor matrix in orthgonal curvilinear coordinate system can be calculated with the formula for strain tensor in rectangular coordinate system. At last, the universal method for strain tensor conversion in orthogonal curvilinear coordinate system and the expression of strain tensor matrix conversion between ITRF and WGS84P are given.
出处 《大地测量与地球动力学》 CSCD 北大核心 2008年第2期71-76,共6页 Journal of Geodesy and Geodynamics
关键词 正交曲线坐标系 应变张量矩阵 转换矩阵 应变张量转换 几何含义与作用 orthogonal curvilinear coordinate strain tensor matrix conversion matrix conversion of strain tensor geometric meaning
  • 相关文献

参考文献11

  • 1Lay T and Wallace C. Modern global seismology[ M ]. Sandiego, New York, Boston,etc. ,Academic Press, 1995.
  • 2刘序俨,黄声明,梁全强.旋转椭球面上的应变与转动张量表达[J].地震学报,2007,29(3):240-249. 被引量:15
  • 3W.杨,R.布朗纳斯.罗氏应力应变公式手册[M].北京:科学出版社,2005.
  • 4Heitz S. Coordinates in geodesy [ M ]. Berlin, Heidelberg, New York ,etc. Springer - Verlag, 1955.
  • 5孟道骥,梁科.微分几何[M].北京:科学技术出版社,2002.
  • 6Carmo MP著,田畴,忻元龙,姜国英等译.曲线与曲面的微分几何[M].北京:机械工业出版社,2005.
  • 7黄惠青,梁治安.线性代数[M].北京:高等教育出版社,2006.
  • 8Jaeger J C. Elasticity fracture and flow [ M ]. Iodon : Methuen & CO. LTO, New York : John Wiley & Sows. Inc, 1964.
  • 9Vanicek P and Krakiwsky E. Geodesy the concepts[ M ]. Amsterdam, New York, Oxford etc. : North - Holland , Elsevier Science Publishing Company, INC. 1986.
  • 10石耀霖,朱守彪.用GPS位移资料计算应变方法的讨论[J].大地测量与地球动力学,2006,26(1):1-8. 被引量:102

二级参考文献39

共引文献116

同被引文献95

引证文献9

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部