摘要
论证任何一种正交曲线坐标系中的度量张量矩阵皆为对角矩阵,即在该坐标系中的该点的活动标架彼此正交,为直角坐标系;证明可采用直角坐标系的应变张量公式计算正交曲线坐标系的应变张量矩阵;并给出了正交曲线坐标系应变张量转换的普适方法和ITRF与WGS84之间应变张量矩阵转换的表达式。
It is expounded and proved that all metric tensor matrixes in any orthogonal curvilinear coordinate system are diagonal matrixes, i. e. the moving trihedrons at the point in the coordinate system are rectangular and orthgonal with each other, and then it is found out that the strain tensor matrix in orthgonal curvilinear coordinate system can be calculated with the formula for strain tensor in rectangular coordinate system. At last, the universal method for strain tensor conversion in orthogonal curvilinear coordinate system and the expression of strain tensor matrix conversion between ITRF and WGS84P are given.
出处
《大地测量与地球动力学》
CSCD
北大核心
2008年第2期71-76,共6页
Journal of Geodesy and Geodynamics
关键词
正交曲线坐标系
应变张量矩阵
转换矩阵
应变张量转换
几何含义与作用
orthogonal curvilinear coordinate
strain tensor matrix
conversion matrix
conversion of strain tensor
geometric meaning