摘要
用Fourier变换把一维线谐振子的薛定谔方程化为比较容易求解的一阶微分方程,解出一阶微分方程后再利用Fourier逆变换得到薛定谔方程的级数解,最后利用波函数在无限远处等于0的边条件确定能量本征值和本征函数.
By the Fourier transform ation, we change the Schr dinger equation of one-dimensional linear harmonic oscillator to the first-order differential equation which can be easily solved. The progressional solution of the Schr dinger equation can be obtained by the inverse Fourier transform ation after we solve the first-order differential equation. Finally, we can fix the eigen-value and eigen-function of energy based on the boundary condition that wave function is zero when the variable becomes infinite.
出处
《河南大学学报(自然科学版)》
CAS
北大核心
2008年第2期135-138,共4页
Journal of Henan University:Natural Science
基金
河南省自然科学基金资助项目(0611054900)
关键词
线谐振子
束缚态
FOURIER变换
能谱
linear harmonic oscillator
bound state
fourier transform ation
energy spectrum