期刊文献+

一种基于贡献率图的KPCA故障识别方法 被引量:6

Fault identification method of kernel principal component analysis based on contribution plots and its application
在线阅读 下载PDF
导出
摘要 提出一种新的针对KPCA模型的故障识别方法——贡献率图法。该方法是在微分贡献率图和核函数导数的基础上提出来的,它采用统计量T2和SPE对每个变量的偏导数来度量每个变量对统计量T2和SPE的贡献率。和基于数据重构法的KPCA故障识别方法相比,该方法不需要任何迭代近似计算和数据的重构,计算量小且可避免重构产生的误差对识别结果的影响。通过在某型涡扇发动机故障检测与诊断中的应用表明,该方法比基于数据重构法的故障变量识别准确率更高,再结合发动机故障机理分析,便可准确地确诊故障,从而大为缩短故障定位及排故的时间,预防重大事故的发生。 A novel approach of fault identification of KPCA is presented, which is called the contribution plots method. The method is built on the basis of differential contribution plots and the derivative of kernel functions, and measures each variable of contribution to statistics T2 and SPE by theirs partial derivative. Compared with the fault identification method based on data reconstruction, it needs no any approximate computation and avoids the effection of reconstruction errors. The practical applications in monitoring certain type of Turbine-Fan Engine show that the presented method possesses higher accuracy than the method based on data reconstruction in identifying faulty variables, further diagnoses the fault correctly by combining the fault mechanism analysis of aeroengine, and greatly shortens the time of locating faults and elimination.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第3期572-576,共5页 Systems Engineering and Electronics
基金 军队重点科研基金资助课题(2003KJ01705)
关键词 航空发动机 故障检测与故障诊断 故障识别 贡献率图 核主元分析 多元统计分析 aeroengine fault detection and fault diagnosis fault identification contribution plot kernel principal component analysis multivariate statistical analysis
  • 相关文献

参考文献14

  • 1赵立杰,柴天佑,王纲.多元统计性能监视和故障诊断技术研究进展[J].信息与控制,2004,33(2):197-201. 被引量:18
  • 2Dong D, Mcavoy T J. Nonlinear principal component analysis based on principal curves and neural networks [J]. Computers and Chemical Engineering, 1996, 20(1) :65 -78.
  • 3Scholkopf B, Smola A, Muller K R. Kernel principal component analysis [ M ]. Advances in Kernel Methods-Support Vector Learning, Cambridge MA : MIT Press, 1999 . 327 - 352.
  • 4Lee J M, Yoo C K, Choi SW, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59 : 223 - 234.
  • 5Lee JongMin, Yoo ChangKyoo, Lee InBeum. Fault detection of batch processes using multiway kernel principal component analysis[J]. Computers and Chemical Engineering, 2004, 28:1837 - 1847.
  • 6蒋浩天,段建民.工业系统的故障检测与诊断[M].机械工业出版社,2003.
  • 7Westerhuis J A, Gurden S P, Smilde A K. Generalized contribution plots in multivariate statistical process monitoring[J]. Chemometrics and Intelligence Laboratory Systems, 2000, 51:95 - 114.
  • 8Takahashi T, Kurita T. Robust de-noising by kernel PCA[J]. Lecture Notes in Computer Science, 2002, 24(15) : 739 - 744.
  • 9Choi S W, Lee C, Lee J M, et al. Fault detection and identication of nonlinear processes based on kernel PCA [J]. Chemometrics and Intelligent Laboratory Systems, 2005, 75 : 55 - 67.
  • 10Dunia R, Qin S J, Edgar T F, et al. Identification of faulty sensors using principal component analysis[J]. AIChE Journal, 1996, 42:2797-2812.

二级参考文献58

  • 1Santen A, Koot G L M, Zu]lo L C. Statistical data analysis of a chemical plant [ J]. Computers and Chemicl Engineering, 1997,21 ( suppl. ) : 1123 - 1129.
  • 2Michael H K, Harmon H R. Chemometric methods for process monitoring and high-performance controller design [ J ]. AIChE Journal, 1992, 38 (10) : 1593 - 1608.
  • 3MacGregor J F. Statistical process control of multivariate process[J]. Control Engineering Practice, 1995,3(3) :403 -414.
  • 4Kourti T, MacGregor J F. Multivariate SPC methods for process and product monitoring [ J ]. Journal of Quality Technology,1996, 28(4) : 409 -428.
  • 5Baffi G, Martin E B, Morris A J. Non-linear dynamic projection to latent structures modeling [ J ]. Chemometrics and Intelligent Laboratory Systems, 2000,52 ( I ) : 5 - 22.
  • 6Li W, Qin S J. Consistent dynamic PCA based on errors invariables subspaee identification [ J ]. Journal of Process Control,2001, 11 (6) : 661-678.
  • 7Ku W, Storer R H, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis [J]. Chemometrics And Intelligent Laboratory Systems, 1995, 30( 1 ) :179 - 196.
  • 8Macgregor J H, Jaeckle C, Kiparissides C, et al. Process monitoring and diagnosis by muhiblock PLS methods [ J].AIChE Journal, 1994, 40(5) : 826 -838.
  • 9Hastie T J, Stuetzle W. Principal curves [J]. Journal of American Statistical Association, 1989,84(4) :505 -516.
  • 10Dong D, Mcavoy T J. Nonlinear principal component analysisbased on principal curves and neural networks [ J ]. Computers and Chemicl Engineering, 1996,20( 1 ) : 65 -78.

共引文献18

同被引文献61

引证文献6

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部