期刊文献+

基于群体多样性反馈控制的自组织微粒群算法 被引量:25

Self-Organized Particle Swarm Optimization Based on Feedback Control of Diversity
在线阅读 下载PDF
导出
摘要 微粒群算法是一种新型的群智能算法,已被广泛用于各种复杂优化问题的求解,但算法依然面临着过早收敛问题.为克服算法的早熟问题,提出了自组织微粒群算法.将微粒群体视为自组织系统,引入负反馈机制.群体多样性是影响微粒群算法全局优化性能的关键因素,把群体多样性作为个体微粒可感知的群体动态信息,用于动态调整惯性权重或加速度系数,通过不同的特性参数实现微粒的集聚或分散,使群体维持适当的多样性水平以利于全局搜索.用于复杂函数优化问题的求解,并与其他典型改进算法进行了性能比较.仿真结果表明,基于多样性控制的自组织微粒群算法可以有效避免早熟问题,提高微粒群算法求解复杂函数的全局优化性能. Particle swarm optimization (PSO) is a novel swarm intelligence algorithm inspired by certain social behavior of bird flocking originally. Since proposed in 1995, the algorithm proved to be a valid optimization technique and has been applied in many areas successfully. However, like others evolutionary algorithms, PSO also suffers from the premature convergence problem, especially for the large scale and complex problems. In order to alleviate the premature convergence problem, the paper develops a self- organized PSO(SOPSO) . SOPSO regards the swarm as a self-organized system, and introduces negative feedback mechanism to imitate the information interaction between the particles and the swarm background. Considering swarm diversity is a key factor influencing the global performances of PSO, SOPSO adopts swarm diversity as main dynamic information to control the tuning of parameters through feedback, which in turn can modify the particles to diverge or converge adaptively and contribute to a successful global search. The proposed methods are applied to some complex function optimizations and compared with the other notable improved PSO. Simulation results show SOPSO based on feedback control of swarm diversity is a feasible technique, which can alleviate the premature convergence validly and improve the global performances of PSO in solving the complex functions.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第3期464-471,共8页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60674104) 国家“八六三”高技术研究发展计划基金项目(2006AA01Z126) 山西省自然科学基金项目(2007011046)
关键词 群智能 微粒群算法 群体多样性 反馈控制 早熟 自组织 swarm intelligence particle swarm optimization swarm diversity feedback control premature self-organization
  • 相关文献

参考文献17

  • 1J Kennedy, R C Eberhart. Particle swarm optimization [C]. IEEE Conf on Neural Networks, Perth, Australia, 1995.
  • 2F V D Bergh. An analysis of particle swarm optimizers: [Ph D dissertation] [D]. Pretoria, South Atrica: Department of Computer Science, University of Pretoria, 2001.
  • 3C A C Coello, G T Pulido, M S Lechuga. Handling multiple objectives with particle swarm optimization [J ]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 256-279.
  • 4M P Wachowiak, R Smolikova, Y F Zheng, et al. An approach to multimodal biomedical image registration utilizing particle swarm optimization [J]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 289-301.
  • 5Y Shi, R C Eberhart. Empirical study of particle swarm optimization [C]. The Congress on Evolutionary Computation. Washington, 1999.
  • 6R C Eberhart, Y Shi. Tracking and optimizing dynamic systems with particle swarms [C], The Congress on Evolutionary Computation. Seoul, Kores, 2001.
  • 7Y Shi, R C Eberhart. Fuzzy adaptive particle swarm optimization [C]. The Congress on Evolutionary Computation. Seoul, Korea, 2001.
  • 8M Clere, J Kennedy. The particle swarm-Explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Trans on Evolutionary Computation, 2002, 6(1 ) : 58-73.
  • 9A Ratnaweera, S K Halgamuge, H C Watson. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 240-255.
  • 10M Lovbjerg, T K Rasmussen, T Krink. Hybrid particle swarm optimiser with breeding and subpopulations [C]. Genetic and Evolutionary Computation Conf, San Francisco, 2001.

二级参考文献9

  • 1P N Suganthan. Particle swarm optimiser with neighbourhood operator. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1958~1962
  • 2E Ozcan, C Mohan. Particle swarm optimization: Surfing the waves. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1939~1944
  • 3M Clerc, J Kennedy. The particle swarm: Explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58~73
  • 4F Solis, R Wets. Minimization by random search techniques.Mathematics of Operations Research, 1981, 6(1 ): 19~ 30
  • 5F Van den Bergh. An analysis of particle swarm optimizers: [ Ph D dissertation]. Pretoria: University of Pretoria, 2001
  • 6王凌.智能优化算法及其应用.北京:清华大学出版社,2001( Wang Ling. Intelligent Optimization Algorithms with Applications( in Chinese) . Beijing: Tsinghua University Press,2001)
  • 7J Holland. Adaption in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press, 1975
  • 8李宏,唐焕文,郭崇慧.一类进化策略的收敛性分析[J].运筹学学报,1999,3(4):79-83. 被引量:20
  • 9郭崇慧,唐焕文.演化策略的全局收敛性[J].计算数学,2001,23(1):105-110. 被引量:36

共引文献285

同被引文献224

引证文献25

二级引证文献166

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部