期刊文献+

基于边界样本协调的多智能体合作学习

Multiagent Cooperative Learning Based on Coordination of Boundary Samples
原文传递
导出
摘要 针对Q学习状态空间非常大,导致收敛速度非常慢的问题,给出一种基于边界样本协调的多智能体在线合作学习方法,使得智能体在特定的子空间上进行特化并通过边界状态上的开关函数相互协调,从而能够较快地学习到局部最优.仿真实验表明该方法能够取得比全局学习更好的在线学习性能. Aiming at the large state-space caused by the slow convergence of Q learning, a kind of multiagent cooperative learning is proposed by the coordination of boundary samples. Each agent is specialized in its sub-space, and the agents coordinate through Boolean functions in boundary states. Simulation results have proved that the proposed method performs better than the traditional global learning.
作者 韩伟
出处 《模式识别与人工智能》 EI CSCD 北大核心 2008年第1期111-115,共5页 Pattern Recognition and Artificial Intelligence
关键词 多智能体系统 强化学习 多智能体合作 Muhiagent System, Reinforcement Learning, Multiagent Cooperation
  • 相关文献

参考文献11

  • 1韩伟,陈优广,姜昌华.基于内省推理的多agent在线学习方法[J].模式识别与人工智能,2007,20(2):254-260. 被引量:5
  • 2罗青,李智军,吕恬生.复杂环境中的多智能体强化学习[J].上海交通大学学报,2002,36(3):302-305. 被引量:9
  • 3杜春侠,高云,张文.多智能体系统中具有先验知识的Q学习算法[J].清华大学学报(自然科学版),2005,45(7):981-984. 被引量:21
  • 4Sun R, Peterson T. Muhiagent Reinforcement Learning: Weighting and Partitioning. Neural Networks, 1999, 20(3): 727-753.
  • 5Hougen D F, Gini M, Slagle J. Partitioning Input Space for Reinforcement Learning for Control Proc of the IEEE International Conference on Neural Networks. Houston. USA, 1997: 755-760.
  • 6Lee I S K, Lau H Y K. Adaptive State Space Partitioning for Reinforcement Learning. Engineering Applications of Artificial Intelligence, 2004, 17(3): 577-588.
  • 7Tesauro G J. Temporal Difference I.earning and TD-Gammon. Communications of the ACM, 1995, 38(3):58-68.
  • 8Baird L C. Residual Algorithms: Reinforcement Learning with Function Approximation Proc of the 12th International Conference on Machine Learning. Tahoe City, USA, 1995:30-37.
  • 9Liu J. Autonomous Agents and Multiagent Systems. River Edge, USA: World Scientific Publishing, 2001.
  • 10韩伟.基于情节序列训练的电子市场智能定价算法[J].计算机工程与应用,2007,43(6):17-19. 被引量:3

二级参考文献38

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部