期刊文献+

基于预测模型的虚拟试验不确定性分析方法

Uncertainty analysis approach based on predictive model in virtual experiment
在线阅读 下载PDF
导出
摘要 工程系统中不可避免地存在各种参数不确定性,利用数值计算模型对系统进行虚拟试验时应进行不确定性分析.大型耗时计算模型的不确定性分析将面临严重的的计算复杂性问题,为此,针对工程应用中耗时计算模型,提出一种基于贝叶斯预测模型的不确定性分析仿真方法,采用概率分布为参数不确定性建模,研究系统响应预测不确定性的概率特征.泰勒杆撞击实例验证了该方法的高效性. Uncertainty analysis was necessary in virtual experiment ot engineering system since uncertainty of parameters in inevitable. Complexity problem was confronting uncertainty analysis of big-scale time-consuming calculation model. Here, a simulation approach based on Bayesian predictive model was proposed to predict the distribution function of prediction uncertainty, in which the parameter uncertainties were described in terms of probability density function and the expensive numerical model was approximated by its posterior distribution. A Taylor impact test demonstrates that the proposed method is efficient.
出处 《工程设计学报》 CSCD 北大核心 2008年第1期21-24,28,共5页 Chinese Journal of Engineering Design
基金 国防科工委基础科研项目资助(B0920060321)
关键词 不确定性分析 虚拟试验 预测模型 贝叶斯 uncertainty analysis virtual experiment predictive model Bayesian
  • 相关文献

参考文献6

  • 1SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4): 409-435.
  • 2O'HAGAN A. Bayesian statistics 4 [M]. New York: Oxford University Press, 1992: 345-363.
  • 3OAKLEY J, O'HAGAN A. Bayesian inference for the uncertainty distribution of computer model outputs [J]. Biometrika, 2002, 89: 769-784.
  • 4江振宇,张为华,张磊.虚拟试验设计中的序贯极大熵方法研究[J].系统仿真学报,2007,19(17):3876-3879. 被引量:6
  • 5HEI.TON J C. Sampling-based methods for uncertainty and sensitivity analysis[C]. Proceedings of the 4th International Conference on Sensitivity Analysis of Model Output (SAMO 2004), Los Alamos National Laboratory, 2004.
  • 6吕剑,何颖波,田常津,张方举,陈成军,邓宏见.泰勒杆实验对材料动态本构参数的确认和优化确定[J].爆炸与冲击,2006,26(4):339-344. 被引量:16

二级参考文献15

  • 1袁亚湘 孙文渝.最优化理论与方法[M].北京:科学出版社,1999..
  • 2Taylor G I. The use of flat-ended projectiles for determining dynamic yield stress[A]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences[C]. 1948,194 (1038):300-- 322.
  • 3Johnson G R, Holmquist T J. Evaluation of cylinder-impact test data for constitutive model constants[J]. Journal of Applied Physics, 1988,64(8) :3901--3910.
  • 4Jones S E, Maudlin P J, Foster J C. Constitutive modeling using the Taylor impact test[A]. AD-Vol. 48, ASME,1995.
  • 5Maudlin P J, Gray G T, Cady C M, et al. High-rate material modeling and validation using the Taylor cylinder impact test[R]. LA-UR-98-4545, 1998
  • 6Allen D J, Rule W K, Jones S E. Optimizing material strength constants numerically extracted from Taylor impact data[J]. Experimental Mechanics, 1997,37(3) :333--338.
  • 7Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[A]. Michael J M, Joseph E B. Proceedings of 7th International Symposium on Ballistics[C].the Hegue, the Netherlands, 1983:541-- 547.
  • 8Thomas J Santner, Brian J Williams, William I Notz. Design & analysis of computer experiments [M]. New York: Springer-Verlag, 2003.
  • 9Shewry M C, Wynn H E Maximum entropy sampling [J]. Journal of Applied Statistics (S0266-4763), 1987, 14(1): 165-170.
  • 10Currin C, Mitchell T, Morris M, et al. Bayesian Prediction of Deterministic Functions, with Applications to the Design and Analysis of Computer Experiments [J]. Journal of the American Statistical Association (S0162-1459), 1991, 86(416): 953-963.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部