摘要
本文说明对称法在一定意义下是一种积分线性保守动力系统的辛方法.并指出在hλ的左半复平面上存在有一个对称法的相对稳定区域.这里,h是步长而λ是动力系统的特征根.对称法适用于不显含速度的非线性Hamilton系统,但不适用于显含速度的系统.
Symmetric methods are described in a certain sense as symplectic methods for integrating linear conservative dynamical systems. It is pointed out that there exists a relatively stable region in the left half complex hλ plane for any symmetric method, where h is the step size and λ is the characteristic root of the dynamical system. Therefore, they are applicable to nonlinear Hamiltonian systems. However, we have found that they are not suitable for the systems that depend on velocity explicitly.
出处
《天文学报》
CSCD
北大核心
1997年第3期278-287,共10页
Acta Astronomica Sinica
基金
国家攀登计划
国家自然科学基金资助项目