摘要
结合神经网络和支持向量机的优点,针对实际应用的不同阶段,提出了一套基于神经网络和支持向量机的复合故障诊断技术。该技术不但可以融入新的故障信息,而且可以使故障诊断模型始终处于最优识别状态,并以往复压缩机气缸系统常见故障的诊断为实例,验证了该技术的有效性。
According to different advantages of Artificial Neural Network and Support Vector Machine, a compound fault diagnosis technique based on Artificial Neural Network and Support Vector Machine is introduced for different stages of application. This technique can not only amalgamate new fault information, but also keep the fault diagnosis model on the optimized identification state. Take the fault diagnosis of reciproca,ing compressor cylinder system as an example, effectiveness of the technique is validated.
出处
《流体机械》
CSCD
北大核心
2008年第1期39-42,73,共5页
Fluid Machinery
关键词
神经网络
支持向量机
故障诊断
往复压缩机
artificial neural network
support vector machine
fault diagnosis
reciprocating compressor