期刊文献+

水平受荷壁板桩群桩的变分法分析 被引量:4

Variational analysis of laterally loaded barrette groups
在线阅读 下载PDF
导出
摘要 将壁板桩桩身水平位移用有限级数函数表示,地基土体的荷载位移关系用Mindlin点对点的位移解表示,同时考虑桩前水平土阻抗力和桩侧水平摩阻力沿桩周分布的不均匀性,采用双重高斯数值积分法将基于变分原理建立的壁板桩群桩体系的总势能展开为简单的矩阵形式方程,并根据最小势能原理得到水平受荷壁板桩群桩荷载位移关系的显式解答。与三维有限元方法计算结果的对比验证了所提出解答的合理性。 Based on the variational principle, the total potential energy of a general group of laterally loaded barrettes is established, By using the Gauss double numerical integration method, it is expanded to a simple equation of matrix form, in which a finite series is used to denote the lateral displacement of barrette shaft, Mindlin's point-to-point displacement solution is applied to describe the force-displacement relationship of ground soils; and allowance is made for the nonuniform distributions, of both the lateral soil resistance at the front of and the lateral shaft resistance on the sides of the barrette shaft, along the perimeter of the barrette. In light of the principle of minimum potential energy, an explicit solution is obtained for the load-displacement relationship of laterally loaded barrette groups. The proposed solution is verified from the comparisons of the calculated results made with the three-dimensional finite element method.
出处 《岩土力学》 EI CAS CSCD 北大核心 2008年第2期303-309,共7页 Rock and Soil Mechanics
基金 教育部留学回国人员科研启动基金(No.20030183025)
关键词 水平受荷壁板桩 变分法 群桩 荷载位移关系 laterally loaded barrette variational method pile group load-displacement relationship
  • 相关文献

参考文献7

二级参考文献87

  • 1李桂花,姜乃锋.地下连续墙承重的箱形基础受力分析[J].结构工程师,1992(3):26-31. 被引量:1
  • 2李桂花,周生华,周纪煜,李耀良.地下连续墙垂直承载力试验研究[J].同济大学学报(自然科学版),1993,21(4):575-580. 被引量:25
  • 3李桂花,周生华.关于地下连续墙垂直承载的研究[J].隧道及地下工程,1994,15(2):20-26. 被引量:2
  • 4丛蔼森.地下连续墙的设计施工与应用[M].北京: 中国水利水电出版社,2000..
  • 5团体著者,建筑桩基技术规范JGJ94-94,1995年
  • 6团体著者,山东黄河桩基试验研究阶段报告,1968年
  • 7Poulos H G, Davis E H. The settlement behaviour of single axially loaded incompressible piles and piers[J].Géotechnique, 1968, 18: 351-371.
  • 8Ottaviani M, Three-dimensional finite element analysis of vertically loaded pile groups[J]. Geotechniqne, 1975,25(2): 159-174.
  • 9Mindlin R D. Force at a point in the interior of a semi-infinite solid[J]. Physics, 1936. (7): 195-202.
  • 10Vaziri H, Simpson B, Pappin J W, Simpson L. Integrated forms of Mindlin's equation[J]. Géotechnique, 1982,32(3): 275-278.

共引文献44

同被引文献126

引证文献4

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部