期刊文献+

基于图像分割的城市变化检测 被引量:19

A Method of Urban Change Detection Based on Image Segmentation
在线阅读 下载PDF
导出
摘要 利用遥感数据进行城市变化检测时,由于城市是包含建筑物、道路、绿地以及水体等多种地物类型的综合体,同时与农村居民地等地物类型具有相似的光谱特征,因此,传统的单纯基于光谱信息的变化检测方法很难取得理想的效果。将空间信息加入到变化检测中,可提高变化检测的精度,但常用的加入纹理的方法容易产生边缘效应。本文提出一种基于图像分割的变化检测方法,在该方法中使用一种基于组分的多尺度形态学梯度,具有对噪声不敏感、边缘不会变厚等优点;同时与现有方法进行比较。实验结果表明,该方法在加入图像空间信息的同时避免了加入纹理等空间信息所产生的边缘效应,能够有效地提高城市变化检测的精度。 Urban change detection using spectral information alone proves to be unsatisfactory owing to the high spectral variability of the urban area and the similarity between the urban area and the rural area. The addition of the spatial information would improve the accuracy of change detection for urban area. In this paper, a method based on image segmentation was proposed and evaluated for urban change detection with post-classification com- parison technique. In this method, a component-based multi-scale multi-spectral gradient algorithm was applied in image segmentation, which was insensitive to noise and could extract the various fineness of the edges; and the combination of segmentation result and pixel-based classification was used to get a better classification result for post-classification comparison. Furthermore, it was also compared with other two methods: one with spectral data alone and the other with the addition of texture features. The results show that the method based on image segmentation provides a significant improvement in overall accuracy and Kappa coefficient of urban change detection because it can not only incorporate the spatial information but also avoid the edge effect with the addition of texture.
出处 《地球信息科学》 CSCD 2008年第1期121-127,共7页 Geo-information Science
关键词 城市变化检测 分类后比较法 图像分割 urban change detection post-classification comparison image segmentation
  • 相关文献

参考文献14

  • 1王琳,徐涵秋,李胜.福州城市扩展的遥感动态监测[J].地球信息科学,2006,8(4):129-135. 被引量:34
  • 2Mas J F. Monitoring land-cover changes: A comparison of change detection techniques. International Journal of Remote Sensing, 1999, 20(1) : 139 - 152.
  • 3Singh A. Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 1989, 10:989-1003.
  • 4Zhang Q, Wang J, Peng X, et al. Urban built-up land change detection with road density and spectral information from multi-temporal Landsat TM data. International Journal of Remote Sensing, 2002, 23(15) : 3057 -3078.
  • 5宋翠玉,李培军,杨锋杰.运用多尺度图像纹理进行城市扩展变化检测[J].国土资源遥感,2006,18(3):37-42. 被引量:22
  • 6Struckens J, Coppin P R, Bauer M E. Integrating contextual information with per-pixel classification for improved land cover classification. Remote Sensing of Environment, 2000, 71 : 282 - 296.
  • 7Carleer A P, Debeir O, Wolff E. Assessment of very high spatial resolution satellite image segmentations. Photogrammetric Engineering & Remote Sensing, 2005, 71 (11) : 1285 - 1294.
  • 8Nelson R, Holben B. Identifying deforestation in Brazil using multi-resolution satellite data. International Journal of Remote Sensing, 1986, (3) : 429 -443.
  • 9Wang D. A muhi-scale gradient algorithm for image segmentation using watersheds. Pattern Recognition, 1997,30(12) : 2043 -2052.
  • 10Sollie P, Pesaresi M. Advances in mathematical morphology applied to geoscience and remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40: 2042 - 2055.

二级参考文献26

  • 1徐涵秋.基于压缩数据维的城市建筑用地遥感信息提取[J].中国图象图形学报(A辑),2005,10(2):223-229. 被引量:106
  • 2朱俊杰,郭华东,范湘涛,朱博勤.单波段单极化高分辨率SAR图像纹理分类研究[J].国土资源遥感,2005,17(2):36-39. 被引量:8
  • 3Singh A.Digital change detection techniques using remotely-sensed data[J].International Journal of Remote Sensing,1989,10:989-1003.
  • 4Jensen J R.Introductory Digital Image Processing:A Remote Sensing Perspective,2nd Ed[M].Upper Saddle River,NJ:Prentice-Hall,1996.
  • 5Mas J F.Monitoring land-cover changes:a comparison of change detection techniques[J].International Journal of Remote Sensing,1999,20:139-152.
  • 6Zhang Q,Wang J,Peng X,et al.Urban built-up land change detection with road density and spectral information from multi-temporal Landsat TM data[J].International Journal of Remote Sensing,2002,23(15):3057-3078.
  • 7Marceau D J,Howarth P J,Dubois J M,et al.Evaluation of the Grey-Level Co-Occurrence Matrix method for land-cover classification using SPOT imagery[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28(4):513-519.
  • 8Gong P,Marceau D J,Howarth P J.A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data[J].Remote Sensing of Environment,1992,40:137-151.
  • 9Chavez P J,Bauer B.An automatic optimum kernel-size selection technique for edge enhancement[J].Remote Sensing of Environment,1982,12:23-38.
  • 10Franklin S E,McDermid G J.Empirical relations between digital SPOT HRV and CASI spectral response and lodgepole pine (Pinas contorta) forest stand parameters[J].International Journal of Remote Sensing,1993,14(12):2331-2348.

共引文献54

同被引文献226

引证文献19

二级引证文献181

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部