期刊文献+

基于AdaBoost的SAR图像自动分类 被引量:4

Automatic SAR Image Classification Based on AdaBoost
在线阅读 下载PDF
导出
摘要 受相干斑噪声的影响,传统的SAR图像分类方法很难得到较好的分类效果。文中提出一种SAR图像自动分类算法,该算法基于灰度共生矩阵提取特征,结合了AdaBoost和纠错编码设计分类器。实验结果表明,该算法可以得到较好的分类结果。与传统的最大似然法相比,分类精度得到了显著的提高。 Affected by speckles, SAR image can not be classified well by using the traditional methods. This paper proposes an automatic SAR image classification algorithm, which extracts the feature based on the gray level co-occurrence matrix, and designs classifier with AdaBoost and error correcting code. Experimental results show that the algorithm is eftective for SAR image classification. Compared with maximum likelihood method, the classification accuracy is improved significantly.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第1期190-191,194,共3页 Computer Engineering
关键词 纠错输出码 灰度共生矩阵 合成孔径雷达 分类 error correcting codes gray level matrix synthetic aperture radar classification
  • 相关文献

参考文献4

  • 1孙洪.合成孔径雷达图像处理[M].北京:电子工业出版社,2005:134-147.
  • 2Freund Y,Schapire R E.A Decision-theoretic Generalization of On-line Learning and an Application to Boosting[J].Computer and System Scienc-1997,55(1):119-139.
  • 3Schapire R E,Singer Y.Improved Boosting Algorithms Using Confidence-related Predictions[J].Machine Learning,1999,37(3):297-336.
  • 4Baraldi A.An Investigation of the Texture Characteristics Associated with Gray Level Matrix Statistical Parameters[J].IEEE Trans.on Geo-science and Remote Sensing,1995,33(2):293-303.

共引文献5

同被引文献35

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部