期刊文献+

辅以纹理特征的高分辨率遥感影像分类 被引量:21

Application of texture feature to classification of high resolution remote sensing image
在线阅读 下载PDF
导出
摘要 为了提高对高分辨率影像的分类精度,通过灰度差矢量法快速提取纹理特征,利用BP神经网络并辅以纹理特征,对一幅江西某地0.2m分辨率的航空影像进行分类。结果显示,对比度纹理特征能较好地反映该影像的纹理信息;对光谱特征不典型、纹理特征明显的人工树林,分类精度可达到90%以上;增加纹理特征后,影像分类的总精度也由55%提高到94%。表明这种结合纹理特征和BP神经网络的分类方法,能提高对高分辨率影像分类的精度。 For improving the classification accuracy of high resolution image, by extracting texture feature with gray level difference vector fleetly, an aerial image with 0.2m resolution from Jiangxi is classified by BP neural network with extracted texture feature.The result shows that, the contrast texture feature can describe the texture information of this image commendably; the classification accuracy over 90% for plantation with unrepresentative spectral feature and distinct texture feature; the collective classification accuracy of whole image is increased form 55% to 94% using the texture feature.It’s indicated that the classification accuracy of high resolution image can be improved using the way of combining texture feature with BP neural network.
出处 《测绘科学》 CSCD 北大核心 2008年第1期88-90,共3页 Science of Surveying and Mapping
关键词 遥感影像分类 高分辨率 纹理分析 灰度差矢量 BP神经网络 classification of remote sensing image high resolution texture analysis grey level difference vector BP neural network
  • 相关文献

参考文献11

  • 1姜青香,刘慧平,孔令彦.纹理分析方法在TM图像信息提取中的应用[J].遥感信息,2003,25(4):24-27. 被引量:11
  • 2Paola J D, Schowenger R A. A detailed comparison of back-propagation neural network and maximumlikelihood classifiers for urban land use classification [ J]. IEEE Trans on Geoscience and Remote Sensing, 1995.33(4) : 981-996.
  • 3刘龙飞,陈云浩,李京.遥感影像纹理分析方法综述与展望[J].遥感技术与应用,2003,18(6):441-447. 被引量:72
  • 4Haralick R, Shanmugam K, Dinstein I. Textural Features for Image Classification [ J ]. IEEE Transaction on Systems, Man, Cybernetics, SMC- 1973, 3(6): 610-621.
  • 5章孝灿,黄智才,赵元洪.遥感数字图像处理[M].杭州:浙汀大学出版社,1996.
  • 6Hill R, PCI Geomatica Version 9. 0 on-Line Help [Z]. PCI Inc. , 2003. Ontario.
  • 7Andrea B, Flavio P, An Investigation of the Texture Characteristics Associated with Gray Level Cooccurrence Matrix Statistical Parameters [ J ]. IEEE Transaction On Geoscience and Remote Sensing,1995, 33(2). 293-304.
  • 8陈玉敏.基于神经网络的遥感影像分类研究[J].测绘信息与工程,2002,27(3):6-8. 被引量:28
  • 9贾永红,张春森,王爱平.基于BP神经网络的多源遥感影像分类[J].西安科技学院学报,2001,21(1):58-60. 被引量:31
  • 10Chang P, Shih J S. The Application of Back Propagation Neural Network of Multi-channel Piezoelectric Quartz Crystal Sensor for Mixed Organic Vapours[J]. Tamkang Journal of Science and Engineering,2002, 5(4): 209-217.

二级参考文献29

共引文献148

同被引文献309

引证文献21

二级引证文献196

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部