期刊文献+

用谱分解法求解自适应因子值

A method of measure the result of the adaptive factor by decompounding spectrum
在线阅读 下载PDF
导出
摘要 在序贯平差自适应因子取值范围确定的情况下,以均方误差作为评判未知参数解优劣的标准,利用谱分解的方法求该范围内最佳的自适应因子值,并给出了相应的计算步骤和公式推导,为了说明该方法的正确性和合理性,将它与方差分量估计法进行计算和比较。结果证明利用该方法求解出的自适应因子值不仅使均方误差达到最小,而且使求解后得到的结果具有一定的实际意义。 With definite range of adaptive factor in the real-time sequential adjustment, the mean square error is used as a criterion to judge whether the result is good or bad.Then a method of calculating the adaptive factor by decompounding spectrum is proposed and the formula is deduced.In order to illuminate the correctness and rationality, a contrast between this method and the approach of robust estimation principle is presented.It is shown by the calculation that the value of the adaptive factor makes the mean square error least, and the results subsequently by the way have the actual meanings.
出处 《测绘科学》 CSCD 北大核心 2008年第1期48-50,共3页 Science of Surveying and Mapping
关键词 谱分解 均方误差 自适应因子 decompounding spectrum mean square error adaptive factor
  • 相关文献

参考文献11

  • 1Lifen Sui, Yanyu Liu, Wei Wang, Pengpai Fan. Adaptive sequential adjustment [ C ] //Ⅵ Hotine-Marussi Symposium of Theoretical and Computational Geodesy. 29 May to 2 June, 2006, at Wuhan.
  • 2Yuanxi Yang, Weiguang Gao. An optimal adaptive Kalman filter [J]. Journal of Geodesy, 2006, 80. 177-183.
  • 3杨元喜.动态定位自适应滤波解的性质[J].测绘学报,2003,32(3):189-192. 被引量:50
  • 4黄贤源,隋立芬.确定实时序贯平差自适应因子取值范围的方法[J].测绘科学技术学报,2006,23(5):325-327. 被引量:2
  • 5徐天河.[D].郑州:解放军信息工程大学,2004.
  • 6杨元喜 徐天河.综合验前模型信息和验后观测信息的白适应正则化方法.大地测量与地球动力学进展,2004,:863-871.
  • 7庄楚强,吴亚森.应用数理统计基础[M].广州:华南理工大学出版社,2003.
  • 8沈云中,许厚泽.不适定方程正则化算法的谱分解式[J].大地测量与地球动力学,2002,22(3):10-14. 被引量:31
  • 9隋立芬,宋力杰.误差理论与测量平差基础教材[M].北京:解放军出版社,2004.
  • 10宋力杰.测量平差程序设计[M].郑州:中国人民解放军测绘学院出版社,1998:274-276.

二级参考文献30

  • 1[2]隋立芬,宋力杰.误差理论与测量平差基础教材[M].北京:解放军出版社,2004:172-176.
  • 2[5]庄楚强,吴亚森.应用数理统计基础[M].广州:华南理工大学出版社,2004:538-541.
  • 3[6]Sui Lifen,Liu Yanyu,Wang Wei,et al.Adaptive Sequential Adjustment[A].Ⅵ Hotine-Marussi Symposium of Theoretical and Computational Geodesy[C].Wuhan,China,2006.
  • 4YANG Yuan-xi, HE Hai-bo, XU Guo-chang. A New Adaptively Robust Filtering for Kinematic Geodetic Positioning[J]. Journal of Geodesy, 2001, 75 (2):109-116.
  • 5YANG Yuan-xi, XU Tian-he, HE Hai-bo. On Adaptively Kinematic Filtering [A]. English Edition of Acta Geodetica et Cartographica Sinica[ C ]. Beijing: Publishing House of Surveying and Mapping,2001.
  • 6YANG Y, XU T. An Adaptive Kalman Filter Based on Sage Windowing Weights and Variance Components[J]. Journal of Navigation, 2003.
  • 7YANG Yuan-xi, WEN Yuan-hn. Synthetically Adaptive Robust Filtering for Satellite Orbit Determination[J]. Science in China, Series D, 2003,(5).
  • 8KOCH K R, YANG Yuan-xi. Robust Kalman Filter for Rank Deficient Observation Model[J]. Journal of Geodesy, 1998,72(8) : 436-441.
  • 9YANG Yuan-xi. Robust Kalman Filter for Dynamical System[J]. Journal of the Zhengzhou Institute of Surveying and Mapping, 1997, 14 (2) : 79-84. ( in Chinese).
  • 10ZHOU Jiang-wen, HUANG You-cai, YANG Yuan-xi,OU Ji-kun. Robustified Least Squares Methods[ M].Wuhan: Press of Huazhong University of Science and Technology, 1997. (in Chinese).

共引文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部