期刊文献+

交通流视频检测中背景初始化算法 被引量:11

Background initialization algorithm in traffic flow video detection
在线阅读 下载PDF
导出
摘要 为了获取具有运动前景物体的初始背景,提出一种基于聚类识别的背景初始化算法。首先利用滑动可变窗口检测每个像素的所有不重叠平滑子序列,获取可能背景;然后选择每个平滑子序列的中值样本点构建分类序列集,根据未知类别的无监督聚类识别思想获取背景子集,实现背景初始化。选取不同交通状态的视频训练序列,将本文方法同中值法、一致性检测法进行了对比实验。结果表明,本文方法具有良好的适应性,可克服缓慢运动大型前景物体造成的影响,实现覆盖率大于50%的背景初始化。 To get the initialized background from the training sequence with foreground objects, a new background initialization algorithm was proposed based on clustering classifier. In this method, all stable sub-intervals in the training sequence were located for each pixel as possible background. Then a classify data set was constructed by the median values of each sub-interval. A background sub-set was obtained from the data set by unsupervised clustering. Accordingly the initialized background was obtained from the background sub-set. By experiments, the proposed method was compared with the median method and the sample consensus method under different traffic conditions. Results show that this method is robust, overcomes the influence of slow moving big objects, and tolerates over 50% foreground pixels and noises.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第1期148-151,共4页 Journal of Jilin University:Engineering and Technology Edition
基金 “973”国家重点基础研究发展规划项目(2006CB705500) 吉林省科技厅国际合作项目(20040705-2) 人事部归国优秀人员项目
关键词 计算机应用 视频检测 背景模型 背景初始化 交通流检测 无监督聚类 computer application video detection background model initialization background traffic flow detection unsupervised clustering
  • 相关文献

参考文献8

  • 1Wren C R,Azarbayejani A,Darrell T,et al.Pfinder:real-time tracking of the human body[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):780-785.
  • 2Stauffer C,Grimson W E L.Adaptive background mixture models for real-time tracking[J].Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.1999(2):246-252.
  • 3Long W,Yang Yee-hong.Stationary background generation:an alternative to the difference of two images[J].Pattern Recognition,1990,23 (12):1351-1359.
  • 4Wang H Z,Suter D.A novel robust statistical method for background initialization and visual surveillance[C]//Computer Vision-Accv 2006,Pt I,Berlin:Springer-Verlag,2006:328-337.
  • 5Gutchess D,Trajkovic M,Cohen-Solal E,et al.A background model initialization algorithm for video surveillance[M].Vancouver,BC:Institute of Electrical and Electronics Engineers Inc,2001:733-740.
  • 6Marco C M B,Vittorio M.Multi-level background initialization using hidden Markov Models[C]//First ACM SIGMM International Workshop on Video Surveillance,2003:11-20.
  • 7Andrea C A F,Vittorio M.Background initialization in cluttered sequences[C] // Computer Vision and Pattern Recognition Workshop,2006:197.
  • 8李志慧,张长海,曲昭伟,王殿海.交通流视频检测中背景模型与阴影检测算法[J].吉林大学学报(工学版),2006,36(6):993-997. 被引量:16

二级参考文献9

  • 1Ridder C, Munkelt O, Kirchner H..Adaptive background estimation and foreground detection using kalman filtering[ C ] //Proc International Conference on recent Advances in Mechatronics,1995 : 193-199.
  • 2Wren Christopher Richard, Azarbayejani Ali, Darrell Trevor Pfinder. Real-time tracking of the human body[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (7) : 780-785.
  • 3Stauffer Chris, Grimson W E L. Adaptive background mixture models for real-time tracking [ J ]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999, 2: 246-252.
  • 4Kahl F, Hartley R, Hilsenstein V. Novelty detection in image sequences with dynamic background [ C ] //In :Statistical Methods in Video Processing. Berlin:Springer-Verlag Berlin ,2004 : 117-128.
  • 5Li Li-yuan, Gu Irene Yu-Hua, Leung Maylor K H,et al. Adaptive background subtraction based on feedback from fuzzy classification [ J ]. Optical Engineering,2004, 43(10) : 2381-2394.
  • 6Toyama Kentaro, Krumm John, Brumitt Barry, et al.Wallflower: Principles and practice of background maintenance[ C ] //Kerkyra, Greece : Institute of Electrical and Electronics Engineers Inc, Piscataway, N J,USA, 1999:255-261.
  • 7Prati A Cucchiara, Mikic R, Trivedi I M M. Analysis and detection of shadows in video streams: a comparative evaluation[ C]//In: CVPR,2001:571-576.
  • 8Prati A, Mikic I, Trivedi M M,et al. Detecting moving shadows : algorithms and evaluation [ J ]. IEEE Trans Pattern Anal Mach Intell,2003, 25(7) : 918-923.
  • 9Salvador Elena, Cavallaro Andrea, Ebrahimi Touradj.Cast shadow segmentation using invariant color features[J]. Computer Vision and Image Understanding,2004,95(2) : 238-259.

共引文献15

同被引文献92

引证文献11

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部