期刊文献+

Monte Carlo Si mulation of Damage Depth in Focused Ion Beam Milling Si_3N_4 Thin Film

Monte Carlo Simulation of Damage Depth in Focused Ion Beam Milling Si_3N_4 Thin Film
在线阅读 下载PDF
导出
摘要 The damage properties of Focused Ion Beam(FIB) milling Si3N4 thin film are investigated by the detailed analyzing images of nanoholes and simulation of Monte Carlo. The damage depth in the Si3N4 thin film for two different ion species(Gallium and Arsenic) under various parameters(ion energy, angle of incidence) are investigated by Monte Carlo method. The simulations show the damage depth increases with the increasing ion energy, the damage depth is dependent on the angle of incident ion, the curves of the damage depth for Ga ion and As ion at 30 keV nearly superpose, while the damage depth for Ga with 90 keV ion is more than that for As ion with the same energy. The damage properties of Focused Ion Beam(FIB) milling Si3N4 thin film are investigated by the detailed analyzing images of nanoholes and simulation of Monte Carlo. The damage depth in the Si3N4 thin film for two different ion species(Gallium and Arsenic) under various parameters(ion energy, angle of incidence) are investigated by Monte Carlo method. The simulations show the damage depth increases with the increasing ion energy, the damage depth is dependent on the angle of incident ion, the curves of the damage depth for Ga ion and As ion at 30 keV nearly superpose, while the damage depth for Ga with 90 keV ion is more than that for As ion with the same energy.
出处 《Semiconductor Photonics and Technology》 CAS 2007年第4期272-275,288,共5页 半导体光子学与技术(英文版)
基金 Science Foundation of Yunnan Province , China(2004A00229 M)
关键词 monte carlo method focused ion beam effects damage depth 聚焦技术 半导体 Si3N4 薄膜
  • 相关文献

参考文献10

  • 1Vasile M J, Niu Z, Nassar R. et al. Focused ion beam milling: depth control for three-dimensional microfabrication[J]. J. Vac. Sci. Technol. B, 1997, 15(6) :2 350-2 354.
  • 2Chyr I, Lee B, Chao L C, et al. Damage generation and removal in Ga^+ focused ion beam micromachining of GaN for photonic applications[J]. J. Vac. Sci. Technol. B,1999, 17(6) : 3 063-3 067.
  • 3Hopkins L C, Griffith J E, Harriott L R. Polycrystalline tungsten and iridium probe tip preparation with a Ga^+ focused ion beam[J]. J. Vac. Sci. Technol. B, 1995, 13(2) : 335-337.
  • 4Reyntjens S, Puers R. A review of focused ion beam applications in microsystem technology[J]. J. Micromech. Microeng, 2001, 11(4):287-300.
  • 5Dubner A D, Wangner A, Melngailis J, et al. The role of the ion-solid interaction in ion-beam-induced deposition of gold [J].J. Appl. Phys, 1991, 70(2): 665-673.
  • 6Zhou J, Yang G L. Nanohole Fabrication using FIB, EB and AFM for Biomedical Applications[J]. International Journal of Precision Engineering and Manufacturing, 2006, 7(4) : 18-22.
  • 7Matcutani T, Iwamoto K, Nagaatomi T, et al. Flattening of sputter-etching with low-energy ions[J]. Jph J. Appl. Phys., 2001, 40(5A):L481-L483.
  • 8Miyagagawa Y, Miyagawa S. Computer simulation of ion beam penetration in amorphous target[J]. J. Appl. Phys. , 1983, 54(12):7 124-7 131.
  • 9Ziersack J F. SRIM2003 program-Stopping and Range Ions in Matter[M]. Version 2003.23, www. srim. org.
  • 10Tseng A A. Recent developments in micromilling using focused ion beam technology [J]. J. Micromech. Microeng, 2004, 14(4): R15-R34.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部