期刊文献+

自适应联邦滤波器及其在组合导航系统中的应用 被引量:7

Self-adaptive federated filter and its application in integrated navigation system
在线阅读 下载PDF
导出
摘要 针对现有的信息分配方法在滤波精度和自适应性方面存在不足的问题,设计了一种在模糊神经网络基础上改进的自适应联邦滤波器,利用模糊神经网络自适应地调整信息分配系数,从而有效抑制干扰对子滤波器工作状态的影响,使主滤波器能够充分、有效地利用子滤波器的信息。将这种自适应联邦滤波器应用到MINS/GPS组合导航系统设计中,并对系统进行了仿真。通过与基于常规联邦滤波器的组合系统的仿真结果比较可知,自适应联邦滤波器的组合系统在性能上有了显著的提高,且速度误差标准差控制在0.06m/s以内,位置误差标准差控制在3.3m以内,具有良好的导航精度。 Aiming at the deficiency of existing information sharing methods in precision and adaptability, a self-adaptive federated filter based on Fuzzy Neural Network was designed, with the information sharing coefficient adjusted by Fuzzy Neural Network, which can restrain the disturbance on sub-filter and make master-filter use information adequately. The self-adaptive federated filter was applied in the MINS/GPS integrated navigation system. The simulation was made which show that, compared to the general federated filter, the system based on self-adaptive federated filter gains remarkable improvement in navigation precision, in which the standard deviation of velocity error is within 0.06 m/s and the standard deviation of position error is within 3.3 m.
出处 《中国惯性技术学报》 EI CSCD 2007年第6期678-681,共4页 Journal of Chinese Inertial Technology
基金 国家863高技术项目(2002AA812038)
关键词 自适应联邦滤波器 模糊神经网络 信息分配 MINS/GPS组合导航系统 self-adaptive federated filter fuzzy neural network information sharing MINS/GPS integration navigation
  • 相关文献

参考文献12

二级参考文献19

  • 1张金槐.关于自适应滤波技术的一些思考[J].国防科技大学学报,1994,16(3):68-79. 被引量:21
  • 2Carlson N A. Federated filter for fault-tolerant integrated navigation systems[A]. Proc of Position Location and Navigation System'88 [C ]. Orlando: IEEE,1988. 110-119.
  • 3孙增圻.智能控制理论与技术[M].北京:清华大学出版社,2000..
  • 4张汝波.强化学习理论及应用[M].哈尔滨:哈尔滨工程大学出版社,2000.
  • 5Carlson N A. Federated filter for fault-tolerant integrated navigation systems[A]. PLANS[C], 1988:1 10-119.
  • 6Carlson N A. Federated square root filter for decentralized parallel processes[J]. IEEE AES, 1990 26(3): 517-525.
  • 7Carlson N A. Federated filter simulation results[J].Navigation, 1994, 41(3): 297-321.
  • 8Sasiadek J Z, Wang Q, Zeremba M B. Fuzzy adaptive Kalman filtering for INS/GPS data fusion [ A ]. Proceedings of the 2000 IEEE International Symposium on Intelligent Control [ C ]. Piscataway,NJ, USA: IEEE, 2000. 181-186.
  • 9Sutton R S,Barto A G.Reinforcement learning:An introduction[M].Cambridge:MIT Press,1998.
  • 10Claude F T.Neural reinforcement learning for behaviour synthesis[J].Robotics and Autonomous Systems,1997,22(3/4):251-281.

共引文献50

同被引文献47

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部