期刊文献+

(I,K)-(m,n)-内射环 被引量:1

(I,K)-(m,n)-injective rings
在线阅读 下载PDF
导出
摘要 引入了(I,K)-(m,n)-内射环的概念,给出了(I,K)-(m,n)-内射环的等价刻划.讨论了(I,K)-(m,n)-内射环与(I,K)-(m,1)-内射环之间的关系及左(I,K)-(m,n)-内射环和右(I,K)-(m,n)-内射环的关系.证明了R是右(I,K)-(m,n)-内射环当且仅当如果z=(m1,m2,…,mn)∈Kn且A∈Im×n,rRn(A)rRn(z),则存在y∈Km,使得z=yA.推广了已知的相关结论. We introduce the notion of (I,K)-(m,n)-injective rings and give equivalent some characterizations of such rings. We study the relation between (I, K)- (m,n)-injective rings and (I,K)-(m, 1)-injective rings. We also study the relation between left (I,K)-(m,n)- injective rings and right (I,K)-(m,n)-injective rings. Finally, we show that if R is a right (I,K)-(m,n)-injective ring 〈=〉if z= (m1,m2,… ,mn) ∈K^nand A∈ I^m×n ,rRn(A)lohtain rRn(z), then z=yA for some y∈K^m. These generalize some known results.
作者 董珺 刘仲奎
出处 《纯粹数学与应用数学》 CSCD 北大核心 2007年第4期565-570,共6页 Pure and Applied Mathematics
基金 兰州工专科技项目(25k-006)
关键词 (I K)-(m n)-内射环 (I K)-n-内射环 (I K)-FP-内射环 (I K)-f-内射环 (I ,K )- (m, n )-injective rings, (I, K )-n-injective rings, (I, K )-FP-injective rings, (I,K)-f-injective rings
  • 相关文献

参考文献6

  • 1Yousif M F, Zhou Y. FP-injective, simple-injective, and quasi-frobenius rings[J]. Comm. Algebra, 2004.32(6):2273-2285.
  • 2Chen J.Ding N,Li Y,et al.On(m.n)-injective of modules[J].Comm.Algebra,2001,29(12):5589-5603.
  • 3Kasch F, Rings and Modules[M]. New York : Academic Press, 1982.
  • 4Anderson F W, Fuller K R. Rings and Categories of Modules[M]. New York:springer-verlag,1973.
  • 5Nicholson W K,Park J K,Yousif M F.On simple-injective rings[J].Algebrs Colloquium,2002,9(3):259-264.
  • 6Nicholson W K, Yousif M F. International Symposium of Ring Theory[M]. Boston.. Birkhauser, 2001.

同被引文献8

  • 1Passman D S. The Algebraic Structure of Group Rings[M]. New York: Wiley-Interscience, 1977.
  • 2Hungerford T W. Algebra[M]. New York: Spring-Verlag, 1974.
  • 3Nicholson W K, Watters J F. Rings with projective socle[J]. Proc. Amer. Math. Soc., 1988,102(3):443-450.
  • 4Liu Zhongkui. Rings with flat left socle[J]. Comm. Algebra, 1995,23(5):1645-1656.
  • 5安德森 K W,富勒尔 K R.环与模范畴[M].王尧,任艳丽,译.2版.北京:科学出版社,2008.
  • 6Xue Weimin. On generalization of excellent extensions[J]. Acta. Math. Vietnam, 1994,9:31-38.
  • 7Parmenter M M, Stewart P N. Excellent extensions[J]. Comm. Algebra, 1988,16(4):703-713.
  • 8Passman D S. It's essentially Maschke's theorem[J]. Rocky Mountain J. Math., 1983,13:37-54.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部