摘要
引入了(I,K)-(m,n)-内射环的概念,给出了(I,K)-(m,n)-内射环的等价刻划.讨论了(I,K)-(m,n)-内射环与(I,K)-(m,1)-内射环之间的关系及左(I,K)-(m,n)-内射环和右(I,K)-(m,n)-内射环的关系.证明了R是右(I,K)-(m,n)-内射环当且仅当如果z=(m1,m2,…,mn)∈Kn且A∈Im×n,rRn(A)rRn(z),则存在y∈Km,使得z=yA.推广了已知的相关结论.
We introduce the notion of (I,K)-(m,n)-injective rings and give equivalent some characterizations of such rings. We study the relation between (I, K)- (m,n)-injective rings and (I,K)-(m, 1)-injective rings. We also study the relation between left (I,K)-(m,n)- injective rings and right (I,K)-(m,n)-injective rings. Finally, we show that if R is a right (I,K)-(m,n)-injective ring 〈=〉if z= (m1,m2,… ,mn) ∈K^nand A∈ I^m×n ,rRn(A)lohtain rRn(z), then z=yA for some y∈K^m. These generalize some known results.
出处
《纯粹数学与应用数学》
CSCD
北大核心
2007年第4期565-570,共6页
Pure and Applied Mathematics
基金
兰州工专科技项目(25k-006)