期刊文献+

加权Hausdorff距离蚁群算法寻优的红外图像匹配 被引量:3

The Infrared Image Match of Weighted Housdorff Distance Ant Colony Algorithm of Seeking Optimal Path
在线阅读 下载PDF
导出
摘要 在用图像增强、细化技术对红外图像进行预处理基础上,提出将边缘轮廓图像的特征分为交叉点、分支点和一般点,并对这三类点集赋予不同权值的计算方法及使用蚁群智能寻优Hausdorff距离,提高了红外图像匹配算法的鲁棒性及计算性能。仿真验证了本文算法的有效性。 Based on the strengthening of images and thinning technology to pre-process the infrared image, The characteristics of verge outline images can be divided into cross point, bifurcated point and common point .The calculating method of giving three kinds endows different fight and using ant colony brainpower seeks optimal path and improves the matching robust of infrared image and the performance of calculating. Simulating proves the validity of this algofithm.
出处 《红外技术》 CSCD 北大核心 2007年第12期708-711,共4页 Infrared Technology
基金 航空科学基金(04I53067) 航空支撑科技基金(05C53005)
关键词 红外图像 蚁群算法 图像匹配 infrared image ant colony algorithm matching of image
  • 相关文献

参考文献4

二级参考文献18

  • 1王慧燕,程翼宇.基于信息测度特征和Hausdorff距离的图像匹配策略[J].中国图象图形学报(A辑),2004,9(11):1314-1319. 被引量:5
  • 2冷雪飞,刘建业,熊智,邢广华.鲁棒Hausdorff距离在SAR/惯性组合导航图像匹配中的应用研究[J].东南大学学报(自然科学版),2004,34(B11):141-144. 被引量:4
  • 3EUGENE SCOTT Baker, RONALD D DeGroat. A correlation-based subspace tracking algorithm[J]. IEEE Trans on Signal Proceesing,1998,46(11):3112-3116.
  • 4DANIEL P Huttenlocher, GREGORY A Klanderman, WILLIAM J Rucklidge. Comparing images using the Hausdorff distance [J]. IEEE Trans on PAMI,1993,15(9):850-863.
  • 5VIRGINIA C Klema, ALAN J Laub. The singular value decomposition: Its computation and some applications [J]. IEEE Trans on Automatic Control,1980,25(2):164-176.
  • 6B K Artikeyan, A Sarkar. Shape description by time Series [J]. IEEE Trans on PAMI,1989,11(9):977-984.
  • 7Baoxin Li,Qinfen Zheng.Experimental Evaluation of Neural,Statistical and Model-Based Approaches to FLIR ATR[A].SPIE[C].1998,3371:388~397.
  • 8B.Li.Experimental Evaluation of FLIR ATR Approaches-A Comparative Study[J].Computer Vision and Image Understanding.2001,84:5~24.
  • 9John E.Albus.Applications of an Efficient Algorithm for Locating 3D Models in 2D Images[A].SPIE[C].1998,3371:416~427.
  • 10J.A.Ratches,C.P.Walters.Aided and Automatic Target Recognition Based Upon Sensory Inputs From Image Forming Systems[J].IEEE Trans.PAMI.1997,19(9):1004~ 1019.

共引文献20

同被引文献35

  • 1韩彦芳,施鹏飞.基于蚁群算法的图像分割方法[J].计算机工程与应用,2004,40(18):5-7. 被引量:38
  • 2熊本海,钱平,罗清尧,吕健强.基于奶牛个体体况的精细饲养方案的设计与实现[J].农业工程学报,2005,21(10):118-123. 被引量:50
  • 3C. Lin and R. Nevitia. Building detection and description from a single intensity image[J]. Computer Vision and Image Understanding, 1998, 72: 101-121.
  • 4Stephen Levitt, Aghdasi F. Texture Measure for Building Recognition in Aerial Photographs[C]//South African: Proceeding of the 1997 South African Symposium, 1997.
  • 5Coloni A, Dorigo M, Maniezzo V. Ant system: Optimization by a colony of cooperating agent[J]. IEEE Trans on Systems, Man and Cybernetics2Part B:Cybernetics. 1996, 26(1): 29-41.
  • 6李伟,沈振康,李飚.基于蚁群算法的仿射变换参数求解[J].红外技术,2007,29(11):662-665. 被引量:5
  • 7Viazzi S, Bahr C, Schlageter-Tello A, et al. Analysis of individual classification of lameness using automatic measurement of back posture in dairy cattle[J]. Journal of Dairy Science, 2013, 96(1): 257-266.
  • 8Porto S, Arcidiacono C, Anguzza U, et al. A computer vision-based system for the automatic detection of lying behaviour of dairy cows in free-stall barns[J]. Biosystems Engineering, 2013, 115(2): 184-194.
  • 9Viazzi S, Bahr C, Van Hertem T, et al. Comparison of a three-dimensional and two-dimensional camera system for automated measurement of back posture in dairy cows[J]. Computers and Electronics in Agriculture, 2014, 100(1): 139-147.
  • 10Yajuvendra S, Lathwal S S, Rajput N, et al. Effective and accurate discrimination of individual dairy cattle through acoustic sensing[J]. Applied Animal Behaviour Science, 2013, 146(1-4): 11-18.

引证文献3

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部