期刊文献+

基于时间加权的协同过滤算法 被引量:26

Collaborative filtering algorithm based on time weight
在线阅读 下载PDF
导出
摘要 协同过滤是个性化推荐系统中采用最广泛的推荐技术,但已有的方法是将用户不同时间的兴趣等同考虑,时效性不足。针对此问题,提出了一种改进的协同过滤算法,使得越接近采集时间的点击兴趣,在推荐过程中具有更大的权值,从而提高了推荐的准确性。 Collaborative filtering is the most widely used recommendation technology in the personalized recommendation system. However, the user's interests in different time have been taken into equal consideration with the method being used, which leads to the lack of effectiveness in the given period of time. In view of this problem, this paper presented an improved collaborative fihering algorithm to make the click interests, approaching the gathering time, have bigger weight in the recommendation process, thereby to improve the accuracy of the recommendation.
作者 王岚 翟正军
出处 《计算机应用》 CSCD 北大核心 2007年第9期2302-2303,2326,共3页 journal of Computer Applications
基金 河南省高校杰出科研人才创新基金资助项目(2006KYCX004) 河南省青年骨干教师基金资助项目(134)
关键词 协同过滤 个性化推荐 邻居用户 时间权值 collaborative filtering individual recommendation neighbor user time weight
  • 相关文献

参考文献6

二级参考文献29

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167.

共引文献717

同被引文献211

引证文献26

二级引证文献167

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部