期刊文献+

一种改进的动态二叉树的自组织神经网络算法 被引量:2

Improved dynamical binary-tree based self-organizing neural network algorithm
在线阅读 下载PDF
导出
摘要 分析了自组织神经网络各种改进算法的优缺点,详细设计和实现了一种基于改进动态二叉树的自组织映射树(DBTSONN)。在改进动态二叉树中神经元节点可以自动生长和剪除,无需在训练前预先确定自组织神经网络结构。DBTSONN1算法采用单路径自组织树中搜索最匹配叶节点(获胜神经元),DBTSONN2算法考虑了获胜神经元节点所在自组织二叉树的层次,采用双向搜索获胜叶节点,提高了搜索效率。实验结果表明,该算法在向量量化器设计方面具有很好的效果。 The advantages and disadvantages of various improved self-organizing neural network algorithms were discussed in the paper, and an Improved Dynamical Binary-tree Based Self-Organizing Neural Network (DBTSONN) was designed and implemented in detail. In the binary-tree, neuron nodes can be growing and pruning, and the self-organlzing mapping structure is flexible, not needed to be determined in advance. DBTSONNI algorithm uses single path to search the winning leaf nodes, and DBTSONN2 algorithm uses double path search, considering the hierarchical position of the winning node, which can improve the searching efficiency. The experimental results show that DBTSONN algorithm is very useful for vector quantization.
出处 《计算机应用》 CSCD 北大核心 2007年第9期2262-2266,2297,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(60602052) 福建省重点科技项目(2005H086)
关键词 自组织神经网络 动态二叉树 双向搜索机制 算法实验 self-organlzing neural network dynamic binary-tree double path search algorithm experiment
  • 相关文献

参考文献11

  • 1HODGE VJ,AUSTIN J.Hierarchical growing cell structures:TreeGCS[J].IEEE Transactions on Knowledge and Data Engineering,2001,13(2):207-218.
  • 2DOPAZO J,CARAZO J M.Phylogenetic Reconstruction Using an Unsupervised Growing Neural Network That Adopts the Topology of a phylogenetic Tree[J].Journal of Molecular Evolution,1977,155:226-233.
  • 3KONG H S,GUAN L.Self-organizing tree map for eliminating impulse noise with random intensity distributions[J].Journal of Electronic Imaging,1998,7(1):36-55.
  • 4吴郢,阎平凡.结构自适应自组织神经网络的研究[J].电子学报,1999,27(7):55-58. 被引量:14
  • 5KOIKKALAINEN P.Progress with the tree-structured self-organizing map[C]// COHN AG,ed.11th European Conference on Artificial Intelligence,European Committee for Artificial Intelligence (ECCAI).New York:John Wiley & Sons,1994.
  • 6KOIKKALAINEN P,OJA E.Self-organizing hierarchical feature maps[C]// Proceeding IJCNN-90,International Joint Conference On Neural Networks.[S.l.]:IEEE Press,1990,2:279-285.
  • 7LI T,TANG Y Y,FANG L Y.A Structure-Parameter-Adaptive (SPA) neural tree for the recognition of large character set[J].Pattern Recognition,1996,28(3):316-329.
  • 8Riskin E A,Gray R M.A greedy tree growing algorithm for the design of variable rate vector quantizes[C]// IEEE Transactions on Signal Processing.[S.l.]:IEEE Press,1991:2500-2507.
  • 9BUZO A,GRAY AH,GRAY RM,et al.Speech coding based upon vector quantization[C]// IEEE Transactions on Acoustics,Speech,and Signal Processing.[S.l.]:IEEE San Jose,1980:562-574.
  • 10MAKHOUL J,ROUCOS S,GISH H.Vector quantization in speech coding[J].Proceedings of the IEEE,1985,73(11):1551-1585.

二级参考文献3

  • 1吴郢.结构自适应自组织神经网络的研究与应用.清华大学自动化硕士论文[M].,1997..
  • 2吴郢,硕士学位论文,1997年
  • 3Zheng Y,IEEE Trans Neural Networks,1996年,7卷,1期,87页

共引文献13

同被引文献14

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部