期刊文献+

基于分段可逆矩阵变换的超光谱图像无损压缩算法

Study on lossless hyper-spectral image compression algorithm based on subsection invertible matrix transform to eliminate spectral redundancy
在线阅读 下载PDF
导出
摘要 提出了一种新的分段可逆矩阵变换去除谱间冗余算法,结合CDF(2,2)DWT去除空间冗余,去冗余效果好于3D-CDF(2,2)DWT,改进的EBCOT算法进行编码。实验结果表明,无损压缩性能远好于JPEG-LS、WinZip、ARJ、DPCM、中国科学院一小组、NMST、MST的结果,以JPL的Canal测试图像为例,平均而言无损压缩比分别比上述算法提高了43%、38%、36%、31%、17%、13%、10%左右。该算法运算速度快,便于硬件实现。 This paper presented a new algorithm based on subsection invcrtible matrix transform to eliminate spectral redundancy, and 2D-CDF (2, 2) DWT was used together to eliminate spatial redundancy. Its redundancy elimination effect is better than that of 3D-CDF (2, 2) DWT. The experimental results show that in lossless image compression applications the method is much better than JPEG-LS, WinZip, ARJ, DPCM, the research result of a research team of Chinese Academy of Sciences, NMST and MST. Using Canal test images of JPL laboratory as an example data set, on the average the compression ratio using this algorithm increases by 43%, 38%, 36%, 31%, 17%, 13%, and 10% respectively compared to the above algorithms. The algorithm presented in this paper has advantages in computing efficiency and hardware realization convenience.
作者 解成俊 向阳
出处 《计算机应用》 CSCD 北大核心 2007年第9期2110-2113,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60672156) 吉林省科技厅项目(20060519)
关键词 分段可逆矩阵变换 相关冗余 无损压缩 改进的EBCOT算法 subsection invertible matrix transform related redundancy lossless image compression improved EBCOT algorithm
  • 相关文献

参考文献8

二级参考文献53

  • 1张晓玲,沈兰荪.高光谱图像的无损压缩研究进展[J].测控技术,2004,23(5):23-27. 被引量:19
  • 2R. N. Hoffman, D. W. Johnson. Application of EOF's to multispectral imagery: data compression and noise detection for AVIRIS, IEEE Trans. Geosci. Remote Sensing, 1994(32), 25-34.
  • 3G. P. Abousleman. Compression of hyperspectral imagery using the 3-D DCT and hybrid DPCM/DCT, IEEE Trans. Geosci. Remote Sensing, 1995(33), 26-34.
  • 4S. Mallat. Multifrequency channel decompositions of images and wavelet models, IEEE Trans. Acoust.,Speech, Signal Processing, 1989(37), 2091-2110.
  • 5A. Said, W. A. Pearlman. A new, fast and efficient image codec based on set partitioning in hierarchical trees, IEEE Trans. on Circuits and Systems for Video Technology, 1996(6), 243-250.
  • 6J. M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients, IEEE Trans. Signal Processing, 1993(41), 3445-3462.
  • 7Y. Kim, W. A. Pearlman. Lossless volumetric medical image compression, Ph. D Dissertation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy,2001.
  • 8P. L. Dragotti, G. Poggi, A. R. P. Ragozini.Compression of multispectral images by threedimensional SPIHT algorithm, IEEE Trans. on Geosciences and remote sensing, 2000(38), No.1.
  • 9Thomas W. Fry. Hyperspectral image compression on reconfigurable platforms, Master Thesis, Electrical Engineering, University of Washington, 2001.
  • 10M. J. Ryan, J. F. Arnold. "The Lossless Compression of AVIRIS Images By Vector Quantization".IEEE Transactions on Geosciences and Remote Sensing, 1997(35), 546-550.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部