期刊文献+

一种K-means算法的k值优化方案 被引量:6

PROJECT ABOUTt OPTIMIZED THE NUMBER OF CLUSTERS IN K-MEANS CLUSTERING
在线阅读 下载PDF
导出
摘要 聚类算法是数据挖掘中核心技术之一,而k-means算法在经典聚类算法中占有重要地位。针对k-means聚类算法的最佳聚类个数k不易获得,因而使得该聚类算法的应用受到限制,为此提出一种k值优化方法:通过给出大于最佳聚类数的可能聚类数,而得到优化的聚类个数。通过实例给予验证,其结果说明该方法合理有效。 clustering is the one of core technology in data mining. K-means algorithm is a very famous clustering algorithm in the classical clustering. The paper focus on the clustering number of k-means algorithm which is hard to be given and hinders the application. So the paper puts forward a novel k optimized method, which we can obtain the optimized number of clusters if we afford a maximum number of clusters. The test experiment has proved the method reasonable and right.
出处 《巢湖学院学报》 2007年第6期21-24,共4页 Journal of Chaohu University
关键词 聚类 K均值算法 聚类数优化 数据挖掘 Clustering k-means algorithm clustering number optimized data mining
  • 相关文献

参考文献4

二级参考文献18

  • 1[1]Usama M.Fayyad Cory A.Reina Paul S.Bradley,Initialization of Iterative Refinement Clustering Algorithms[C].Proc.4th International Conf.On Knowledge Discovery & Data Mining,1998.
  • 2[2]Pena J M ,J.A.Lozano,and P.Larranaga,An Empirical Comparison of four Initialization Methods for the K-Means Algorithm[J].Pattern Recognition Letters, 1999,20:1027-1040.
  • 3[3]Pal N R and J.C.Bezdek,On Cluster Validity for the Fuzzy c-Means Model,IEEE Transactions on Fuzzy Systems[J].1995,3:370-390.
  • 4[4]Rezaee M R, B P F Lelieveldt and J.H.C.Reiber,A New Cluster Validity Index for Fuzzy c-Means[J].Pattern Recognition Letters ,1998,19:237-246.
  • 5[5]Ray S and R H Turi,Determination of Number of Clusters in K-Means Clustering and Application in Colour Image Segmentation[C].ICAPRDT'99,Calcutta,India,27-29 December,1999.
  • 6Michael J A Berry,Gordon S Linoff.数据挖掘—客户关系管理的科学和艺术[M].袁卫译.北京:中国财政经济出版社,2004.
  • 7G. Katypis, E H Hart, V Kumar. CHAMELEON: A hierarchical clustering algorithm using dynamic modeling [J]. Computer, 1999, 32(8):68-75.
  • 8M Indulska, M E Orlowska. Gravity based spatial clustering [C]//Proceedings of the 10th ACM international symposium on Advances in geographic information systems. United States: Association for Computing Machinery, 2002: 125-130.
  • 9Bottou L, Bengio Y. Convergence Properties of the K-Means Algorithms[M]. Advances in Neural Information Processing System 7,Tesauro G,et al. (eds.), MIT Press, Cambridge, MA, 1995: 585-592.
  • 10Treshansky A, McGraw R. An overview of clustering algorithms [C]//Proceedings of SPIE, The International Society for Optical Engineering. United States: SPIE, 2001 (4367): 41-51.

共引文献345

同被引文献58

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部