摘要
InGaN/GaN MQWs, InGaN/AlGaN MQWs and InGaN/AlInGaN MQWs are grown on (0001) sapphire substrates by MOCVD. Membrane samples are fabricated by laser lift-off technology. The photoluminescence spec-ra of membranes show a blue shift of peak positions in InGaN/GaN MQWs, a red shift of peak positions in InGaN/AlGaN MQWs and no shift of peak positions in InGaN/AIlnGaN MQWs from those of samples with substrates. Different changes in Raman scattering spectra and HR-XRD (0002) profile of InGaN/AlInGaN MQWs, from those of InGaN/GaN MQWs and InGaN/AlGaN MQWs, are observed. The fact that the strain changes differently among InGaN MQWs with different barriers is confirmed. The AIlnGaN barrier could adjust the residual stress for the least strain-induced electric field in InGaN/AIlnGaN quantum wells.
InGaN/GaN MQWs, InGaN/AlGaN MQWs and InGaN/AlInGaN MQWs are grown on (0001) sapphire substrates by MOCVD. Membrane samples are fabricated by laser lift-off technology. The photoluminescence spec-ra of membranes show a blue shift of peak positions in InGaN/GaN MQWs, a red shift of peak positions in InGaN/AlGaN MQWs and no shift of peak positions in InGaN/AIlnGaN MQWs from those of samples with substrates. Different changes in Raman scattering spectra and HR-XRD (0002) profile of InGaN/AlInGaN MQWs, from those of InGaN/GaN MQWs and InGaN/AlGaN MQWs, are observed. The fact that the strain changes differently among InGaN MQWs with different barriers is confirmed. The AIlnGaN barrier could adjust the residual stress for the least strain-induced electric field in InGaN/AIlnGaN quantum wells.
基金
Supported by National Natural Science Foundation of China under Grant Nos 60676032, 60276010, 60376025, 60325413, and 60325413.