期刊文献+

PLS-BP法近红外光谱同时检测饲料组分的研究 被引量:14

Determination of Four Contents of Feedstuff Powder Using Near Infrared Spectroscopy by PLS-BP Model
在线阅读 下载PDF
导出
摘要 建立了用偏最小二乘(partial least squares,PLS)与人工神经网络(artificial neural networks,ANN)联用对饲料样品同时测定水分、灰分、蛋白质、磷含量的预测校正模型。光谱数据用二阶微分及标准归一化处理(SNV),用PLS法将原始数据压缩提取前10个主成分与2个特征峰值作为12个输入向量,采用单隐层的反向传播人工神经网络(Back-Propagation Network,BP),确定中间层的神经元个数为23,初始训练迭代次数为1000。PLS-BP模型对样品四个组分含量的预测决定系数(r2)分别为:0.9950,0.9980,0.9990和0.9670;样品平行扫描光谱预测值的标准偏差分别为:0.02774,0.04853,0.03292和0.02204。 Partial least squares (PLS) and artificial neural networks (ANN) prediction model for four components of feedstuff has been established with good veracity and recurrence. The spectra put into the model should be processed by second derivative and standard normal variate (SNV). Ten principal components compressed from original data by PLS and two peak values were taken as the inputs of Back-Propagation Network (BP), while four predictive targets as outputs, according to Kolmogorov theo- rem and experiment, and twenty three nerve cells were taken as hidden nodes. Its training iteration times was supposed to be 10 000. Prediction deciding coefficient of four components by the model are 0. 995 0, 0. 998 0, 0. 999 0 and 0. 967 0, while the standard deviation of an unknown sample scanned parallelly are 0. 027 74, 0. 048 53, 0. 032 92 and 0. 022 04.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2007年第10期2005-2009,共5页 Spectroscopy and Spectral Analysis
基金 教育部南昌大学食品科学重点实验室开放基金项目(NCU200404) 江西省星火计划项目(2005年)资助
关键词 近红外光谱 饲料 偏最小二乘 人工神经网络 BP网络 Near infrared spectroscopy (NIRS) Feedstuff PLS ANN BP
  • 相关文献

参考文献18

二级参考文献58

  • 1吉海彦,严衍禄.用人工神经网络处理谷物成分分析[J].高等学校化学学报,1993,14(5):618-620. 被引量:9
  • 2吉海彦,严衍禄.用主成分回归和偏最小二乘法定量测定谷物成分[J].北京农业大学学报,1994,20(1):59-63. 被引量:11
  • 3刘晓敏.-[J].中国饲料,1996,(16):35-35.
  • 4杨曙明.提高青贮饲料利用率的研究:博士论文[M].南京:南京农业大学,1997.34-56.
  • 5严衍禄 张录达 等.傅里叶变换近红外漫反射光谱分析应用基础的研究[J].北京农业大学学报,1990,16:5-5.
  • 6吉海彦 严衍禄.Chemical Journal of Chinese Universities(高等学校化学学报),1993,14(5):618-618.
  • 7Wythoff B J, Chem. Intell, Lab. Syst., 1993, 18: 115.
  • 8Cybenko G. Math. Control Signals Syst., 1989, 2: 303.
  • 9Hornik K, Stinchombe M, White H. Neural Networks, 1990, 3: 551.
  • 10Funahashi K. Neural Networks, 1989, 2: 183.

共引文献285

同被引文献275

引证文献14

二级引证文献253

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部