期刊文献+

一种新的具有增强效果的小波域图像去噪方法 被引量:9

A New Wavelet Image Denoising Method with Detail Enhancement
在线阅读 下载PDF
导出
摘要 为了使去噪后的图像具有更佳的视觉效果,基于新近出现的一种小波域阈值去噪方法——NeighShrink,提出了一种具有细节增强效果的小波域图像去噪方法——增强型邻域收缩方法(enhanced NeighShrink,ENS)。该方法一方面继承了NeighShrink方法的优点,在对小波系数进行阈值处理时,由于考虑了其与邻域系数的相关性,从而大大减少了误判图像细节为噪声的情况,同时,通过改变NeighShrink方法中小波系数收缩因子的计算方法,用该方法去噪后的图像取得了高于NeighShrink方法的峰值信噪比;另一方面,通过引入一个细节增强因子P,使得该方法能够对图像细节进行增强,从而得到了更佳的视觉效果。通过实验证明,该方法能够在去噪和细节增强这两方面优于普通软阈值去噪方法和NeighShrink方法。 Wavelet image denoising is an important method of image denoising. Recently, many different schemes of wavelet image denoising were proposed. Among these, NeighShrink suggested by G. Y. Chen et. al. has been proved very efficient. NeighShrink differs from traditional threshold methods in that it incorporates neighboring coefficients when shrinking wavelet coefficients, and thus avoids killing too much image details. In order to improve the visual quality of the denoised image, a new wavelet image denoising method, namely enhanced NeighShrink(ENS) , is proposed in this paper based on the NeighShrink scheme. By changing the way to calculate the shrinkage factor for the wavelet coefficient, ENS achieves statistically better results than original NeighShrink method in denoising. Moreover, by introducing an extra parameter P in our wavelet scale dependent shrinkage factor calculation scheme, ENS can be used to enhance image details while denoising the image. This feature can be used to improve the visual quality of the image, since the original NeighShrink method, like many other schemes, shrinks all wavelet coefficients, which will incur the loss of the image details to some extent. Experimental results show that ENS can achieve better results in both denoising and enhancing of image details than the traditional soft threshold and NeighShrink methods.
作者 傅彩霞 杨光
出处 《中国图象图形学报》 CSCD 北大核心 2007年第1期51-55,共5页 Journal of Image and Graphics
基金 上海市科委科研基金项目(012912059)
关键词 小波变换 图像去噪 邻域窗口 图像增强 wavelet transform, image denoising,neighboring window,image enhancement
  • 相关文献

参考文献15

  • 1谢杰成,张大力,徐文立.小波图象去噪综述[J].中国图象图形学报(A辑),2002,7(3):209-217. 被引量:256
  • 2Mallat S,Hwang W L.Singularity detection and processing with wavelets[J].IEEE Transactions on Information Theory,1992,38(2):617 -643.
  • 3Xu Y,Weaver B,Healy D M,et al.Wavelet transform domain filters:A spatially selective noise filtration technique[J].IEEE Transactions on Image Processing,1994,3 (6):217 - 237.
  • 4Donoho D L,Johnstone I M.Adapting to unknown smoothness via wavelet shrinkage[J].Journal of American Statistic Association,1995,90(12):1200 -1224.
  • 5Donoho D L,Johnstone I M.Wavelet shrinkage asymptopia[J].Journal of Royal Statistica 1Society,1995,57 (2):301 - 369.
  • 6Donoho D L,Johnstone I M.Ideal spatial adaptation via wavelet shrinkage[J].Biometrika,1994,81 (3):425 - 455.
  • 7Donoho D L.Denoising by soft-thresholding[J].IEEE Transactions on Information Theory,1995,41 (3):613 - 627.
  • 8Coifman R R,Donoho D L.Translation invariant denoising[A].In:A.Antoniadis and G.Oppenheim eds.Wavelets and Statistics.Springer Lecture Notes in Statistics 103[C],New York:Springer-Verlag,1994:125 - 150.
  • 9Levent Sendur,Selesnick Ivan W.Bivariate shrinkage with local variance Estimation[J].IEEE Transactions on Signal Processing Letters,2002,9(12):438 -441.
  • 10Mahbubur Rahman S M,Kamrul Hasan Md.Wavelet-domain iterative center weighted median filter for image denoising[J].Signal Processing,2003,83(5):1001 - 1012.

二级参考文献66

  • 1[9]You Yuli, Kaveh D. Fourth-order partial differential equations for noise removal[J]. IEEE Trans. Image Processing, 2000,9(10):1723~1730.
  • 2[10]Bouman C, Sauer K. A generalized Gaussian image model of edge preserving map estimation[J]. IEEE Trans. Image Processing, 1993,2(3):296~310.
  • 3[11]Ching P C, So H C, Wu S Q. On wavelet denoising and its applications to time delay estimation[J]. IEEE Trans. Signal Processing,1999,47(10):2879~2882.
  • 4[12]Deng Liping, Harris J G. Wavelet denoising of chirp-like signals in the Fourier domain[A]. In:Proceedings of the IEEE International Symposium on Circuits and Systems[C]. Orlando USA, 1999:Ⅲ-540-Ⅲ-543.
  • 5[13]Gunawan D. Denoising images using wavelet transform[A]. In:Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing[C]. Victoria BC,USA, 1999:83~85.
  • 6[14]Baraniuk R G. Wavelet soft-thresholding of time-frequency representations[A]. In:Proceedings of IEEE International Conference on Image Processing[C]. Texas USA,1994:71~74.
  • 7[15]Lun D P K, Hsung T C. Image denoising using wavelet transform modulus sum[A]. In:Proceedings of the 4th International Conference on Signal Processing[C]. Beijing China,1998:1113~1116.
  • 8[16]Hsung T C, Chan T C L, Lun D P K et al. Embedded singularity detection zerotree wavelet coding[A].In:Proceedings of IEEE International Conference on Image Processing[C]. Kobe Japan, 1999:274~278.
  • 9[17]Krishnan S, Rangayyan R M. Denoising knee joint vibration signals using adaptive time-frequency representations[A]. In:Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering 'Engineering Solutions for the Next Millennium[C]. Alberta Canada, 1999:1495~1500.
  • 10[18]Liu Bin, Wang Yuanyuan, Wang Weiqi. Spectrogram enhancement algorithm: A soft thresholding-based approach[J]. Ultrasound in Medical and Biology, 1999,25(5):839~846.

共引文献255

同被引文献64

引证文献9

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部