期刊文献+

自动选择跟踪窗尺度的Mean-Shift算法 被引量:35

Mean Shift Tracking with Self-updating Tracking Window
在线阅读 下载PDF
导出
摘要 实用的跟踪系统要求能实时地适应运动目标的外观变化,尺度固定不变的跟踪窗口不能有效地跟踪存在明显尺度变化的目标。本文将多尺度图像的信息量度量方法引入到运动目标跟踪中,提出了一种跟踪窗口自动更新算法,并用此算法改进了基于颜色直方图的Mean-Shift跟踪方案。实验结果表明,改进的跟踪算法对尺寸逐渐减小和逐渐增大的目标都能自动选择合适的跟踪窗口大小。 A practical tracking system is required to update the appearance changes of moving objects in real-time. The system with fixed-size tracking window could not trace an object effectively when scale of the object has distinct changes, therefore it is important to select the scale of tracking window automatically. The information measure of multi-scale image in scale space has been used to differentiate the scale and is introduced into moving object tracking in this paper. Automatic updating method of tracking window is proposed, and is integrated into the classical Mean-Shift tracking algorithm based on color histogram. Experimental results demonstrat that the improved algorithm could select the proper size of the tracking window in the scenarios that not only of increasing scale but of decreasing scale.
出处 《中国图象图形学报》 CSCD 北大核心 2007年第2期245-249,共5页 Journal of Image and Graphics
基金 江苏省自然科学基金项目(BK2004421)
关键词 目标跟踪 信息度量 MEAN-SHIFT object tracking, information measure, Mean-Shift
  • 相关文献

参考文献8

  • 1Comaniciu D,Ramesh V,Meer P.Real-time tracking of non-rigid objects using mean shift[A].In:IEEE International Proceeding on Computer Vision and Pattern Recognition[C],Stoughton:Printing House,2000,(2):142 - 149.
  • 2Comaniciu D,Ramesh V,Meer P.Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5):564 -575.
  • 3彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 4Peng Ning-song,Yang Jie,Liu Zhi.Mean shift blob tracking with kernel histogram filtering and hypothesis testing[J].Pattern Recognition Letters,2005,26(5):605 - 614.
  • 5彭宁嵩,杨杰,周大可,刘志.Mean-Shift跟踪算法中目标模型的自适应更新[J].数据采集与处理,2005,20(2):125-129. 被引量:23
  • 6Collins R T.Mean-Shift blob tracking through scale space[A].In:IEEE International Conference on Computer Vision and Pattern Recognition[C],Baltimore:Victor Graphics,2003,(2):234 - 240.
  • 7王郑耀,程正兴,汤少杰.基于视觉特征的尺度空间信息量度量[J].中国图象图形学报,2005,10(7):922-928. 被引量:23
  • 8Milan Sonka,Vaclav Hlavac,Roger Boyle.Image Processing,Analysis,and Machine Vision(Second Edition).London:Brooks/Cole Publishing,1999.

二级参考文献32

  • 1[1]Fukanaga K, Hostetler LD. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory, 1975,21(1):32-40.
  • 2[2]Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799.
  • 3[3]Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. In: Werner B, ed. IEEE Int'l Proc. of the Computer Vision and Pattern Recognition, Vol 2. Stoughton: Printing House, 2000. 142-149.
  • 4[4]Yilmaz A, Shafique K, Shah M. Target tracking in airborne forward looking infrared imagery. Int'l Journal of Image and Vision Computing, 2003,21 (7):623-635.
  • 5[5]Bradski GR. Computer vision face tracking for use in a perceptual user interface In: Regina Spencer Sipple, ed. IEEE Workshop on Applications of Computer Vision. Stoughton: Printing House, 1998. 214-219.
  • 6[6]Comaniciu D, Ramesh V, Meer P. Kernel-Based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(5):564-575.
  • 7[7]Collins RT. Mean-Shift blob tracking through scale space. In: Danielle M, ed. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2003. 234-240.
  • 8[8]Olson CF. Maximum-Likelihood image matching. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(6):853-857.
  • 9[9]Hu W, Wang S, Lin RS, Levinson S. Tracking of object with SVM regression. In: Jacobs A, Baldwin T, eds. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2001. 240-245.
  • 10[10]Mohammad GA. A fast globally optimal algorithm for template matching using low-resolution pruning. IEEE Trans. on Image Processing, 2001,10(4):626-533.

共引文献201

同被引文献263

引证文献35

二级引证文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部