期刊文献+

A novel hyperchaos evolved from three dimensional modified Lorenz chaotic system 被引量:3

A novel hyperchaos evolved from three dimensional modified Lorenz chaotic system
原文传递
导出
摘要 This paper reports a new four-dimensional continuous autonomous hyperchaos generated from the Lorenz chaotic system by introducing a nonlinear state feedback controller. Some basic properties of the system are investigated by means of Lyapunov exponent spectrum and bifurcation diagrams. By numerical simulating, this paper verifies that the four-dimensional system can evolve into periodic, quasi-periodic, chaotic and hyperchaotic behaviours. And the new dynamical system is hyperchaotic in a large region. In comparison with other known hyperchaos, the two positive Lyapunov exponents of the new system are relatively more larger. Thus it has more complex degree. This paper reports a new four-dimensional continuous autonomous hyperchaos generated from the Lorenz chaotic system by introducing a nonlinear state feedback controller. Some basic properties of the system are investigated by means of Lyapunov exponent spectrum and bifurcation diagrams. By numerical simulating, this paper verifies that the four-dimensional system can evolve into periodic, quasi-periodic, chaotic and hyperchaotic behaviours. And the new dynamical system is hyperchaotic in a large region. In comparison with other known hyperchaos, the two positive Lyapunov exponents of the new system are relatively more larger. Thus it has more complex degree.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第11期3238-3243,共6页 中国物理B(英文版)
基金 Project supported by the National Nature Science Foundation of China (Grant No 60574036), the Specialized Research Fund for the Doctoral Program of China (Grant No 20050055013) and the Program for New Excellent Talents in University of China (NCET).
关键词 CHAOS HYPERCHAOS four dimension chaos system Lyapunov exponent bifurcation diagram chaos, hyperchaos, four dimension chaos system, Lyapunov exponent, bifurcation diagram
  • 相关文献

参考文献32

  • 1Lorenz E N 1963 J. Atmos. Sci. 20 130
  • 2Rossler O E 1976 Phys. Lett. A 57 397
  • 3Chen G R and Ueta T 1999 Int. J. Bifur. Chaos 9 1465
  • 4Lu J H and Chen G R 2002 Int. J. Bifur, Chaos 12 659
  • 5Wang F Q and Liu C X 2006 Acta Phys. Sin. 55 5061
  • 6Yu S M, Lin Q H and QiuS S 2004 Acta Phys. Sin. 53 2084
  • 7Wang G Y, Qiu S S and Xu Z Y 2006 Acta Phys. Sin. 55 3295
  • 8Wang J Z, Chen Z Q and Yuan Z Z 2006 Acta Phys. Sin. 55 3956
  • 9Zhang Y H, Qi G Y, Liu W L and Yan Y 2006 Acta Phys. Sin. 55 3307
  • 10Qi G Y, Chen G R, Du S Z, Chen Z Q and Yuan Z Z 2005 Physica A 352 295

同被引文献17

  • 1王杰智,陈增强,袁著祉.一个新的混沌系统及其性质研究[J].物理学报,2006,55(8):3956-3963. 被引量:54
  • 2Chen G,Dong X.From Chaos to Order:Methodologies,Perspectives and Applications[M].Singapore:World Scientific,1998.
  • 3Lorenz EN.Deterministic nonperiodic flow[J].Journal of Atmospheric Science,1963,20(2):130-141.
  • 4Chen G,Ueta T.Yet another chaotic attractor[J].International Journal of Bifurcation and Chaos,1999,9(7):1465-1466.
  • 5Lü J,Chen G.A new chaotic attractor coined[J].International Journal of Bifurcation and Chaos,2002,12(3):659-661.
  • 6Qi G,Chen G,Du S,et al.Analysis of a new chaotic system[J].Physica A,2005,352(2):295-308.
  • 7Liu C,Liu T,Liu L,et al.A new chaotic attractor[J].Chaos,Solitons & Fractals,2004,22(5):1031-1038.
  • 8Chen Z,Yang Y,Qi G,et al.A novel hyperchaos system only with one equilibrium[J].Physics Letters A,2007,360(6):696-701.
  • 9Zheng P S,Tang W S,Zhang J X.Some novel double-scroll chaotic attractors in Hopfield networks[J].Neurocomputing,2010,73(10):2280-2285.
  • 10Zhang J X,Tang W S.Analysis and control for a new chaotic system via piecewise linear feedback[J].Chaos Solitons &Fractals,2009,42(4):2181-2190.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部