期刊文献+

Noether symmetry and non-Noether conserved quantity of the relativistic holonomic nonconservative systems in general Lie transformations 被引量:3

Noether symmetry and non-Noether conserved quantity of the relativistic holonomic nonconservative systems in general Lie transformations
原文传递
导出
摘要 For a relativistic holonomic nonconservative system, by using the Noether symmetry, a new non-Noether conserved quantity is given under general infinitesimal transformations of groups. On the basis of tile theory of invariance of differential equations of motion under general infinitesimal transformations, we construct the relativistic Noether symmetry, Lie symmetry and the condition under which the Noether symmetry is a Lie symmetry under general infinitesimal transformations. By using the Noether symmetry, a new relativistic non-Noether conserved quantity is given which only depends on the variables t, qs and qs. An example is given to illustrate the application of the results. For a relativistic holonomic nonconservative system, by using the Noether symmetry, a new non-Noether conserved quantity is given under general infinitesimal transformations of groups. On the basis of tile theory of invariance of differential equations of motion under general infinitesimal transformations, we construct the relativistic Noether symmetry, Lie symmetry and the condition under which the Noether symmetry is a Lie symmetry under general infinitesimal transformations. By using the Noether symmetry, a new relativistic non-Noether conserved quantity is given which only depends on the variables t, qs and qs. An example is given to illustrate the application of the results.
作者 罗绍凯
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第11期3182-3186,共5页 中国物理B(英文版)
关键词 RELATIVITY holonomic nonconservative system Noether symmetry non-Noethcr con-served quantity relativity, holonomic nonconservative system, Noether symmetry, non-Noethcr con-served quantity
  • 相关文献

参考文献42

  • 1Luo S K 1987 Teach. Mather. Commun. 5 31
  • 2Luo S K 1990 Proc. ICDVC (Beijing: Peking University Press) p645
  • 3Luo S K 1992 Acta Math. Sci. 12 27
  • 4Luo S K 1996 Appl. Math. Mech. 17 683
  • 5Fang J H 2004 Commun. Theor. Phys. 41 349
  • 6Qiao Y F 2004 Chin. Phys. 13 292
  • 7Zhang Y and Ge W K 2005 Acta. Phys. Sin. 54 1464
  • 8Luo S K 2003 Chin. Phys. Lett. 20 597
  • 9Noether A E 1918 Nachr. Akad. Wiss. Math. Phys. 2 235
  • 10Li Z P 1999 Constrained Hamiltonian Systems and Their Symmetry Properties (Beijing: Beijing Polytechnic University Press)

同被引文献33

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部