期刊文献+

点簇聚合的目标顶点的优化

Optimization of Representative Points for Vertex Clustering
在线阅读 下载PDF
导出
摘要 研究了点簇聚合的目标顶点位置的计算问题。当计算过程中得到的目标顶点不在小单元之内,或者虽然在小单元之内,但目标顶点的位置不能唯一确定时,则将求解目标顶点的问题转化为求解带约束的二次优化问题。此二次优化问题的解既能保证目标顶点位于小单元之内,在位置上又最接近该点簇的重心。实验结果表明,该算法的时间效率类似于Lindstrom的算法,但在简化质量上要优于后者。 The problem of calculating the representative points in vertex clustering was addressed. The problem of calculating the representative point was translated into the problem of constrained quadratic optimization when either the representative point obtained was outside of the cell or the representative point, which was though within the cell, and could not be uniquely determined. While securing the solution of the optimization problem wthin the cell, the position of the representative point is as close to the gravity of the cell as possible. Experimental results show that while the timing efficiency of the algorithm is similar to that of Lindstrom's, the simplification is much better than that of the latter's.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第20期4721-4724,共4页 Journal of System Simulation
基金 广西自然科学基金(0447035)
关键词 点簇聚合 目标顶点 位置优化 三维模型 vertex clustering representative points position optimization 3D model
  • 相关文献

参考文献10

  • 1方同祝,胡正国,金文凯.一种紧致且简单的多分辨率网格表示[J].系统仿真学报,2004,16(8):1750-1753. 被引量:4
  • 2袁天然,戴宁,程筱胜,廖文和.高质量保形三角网格简化算法[J].系统仿真学报,2006,18(z1):26-29. 被引量:3
  • 3J Rossignac,P Borrel.Multi-Resolution 3D Approximations for Rendering Complex Scenes[C]// Geometric Modeling in Computer Graphics,Berlin:Springer-Verlag,1993:455-465.
  • 4D Luebke,C Erikson.View-Dependent Simplification of Arbitrary Polygonal Environments[C]// Computer Graphics,Proc.Siggraph 97,New York:ACM Press,1997:199-208.
  • 5P Lindstrom.Out-of-Core Simplification of Large Polygonal Models[C]// Computer Graphics,Proc.Siggraph 2000,New York:ACM Press,2000:259-262.
  • 6蔡康颖,孙汉秋,吴恩华.基于顶点聚类简化外存模型的保流形算法[J].计算机辅助设计与图形学学报,2004,16(10):1346-1354. 被引量:5
  • 7K-L Low,T-S Tan.Model Simplification Using Vertex Clustering[C]// Proc.1997 Symp.Interactive 3D Graphics,New York:ACM Press,1997:75-82.
  • 8E Shaffer,M Garland.Efficient Adaptive Simplification of Massive Meshes[C]// Proceedings IEEE Visualization 2001,San Diego,California,2001,127-134.
  • 9M Garland,P Heckbert.Surface Simplification Using Quadric Error Metrics[C]// Proceedings of SIGGRAPH97,New York:ACM Press,1997:209-216.
  • 10P Cignoni,C Rocchini,R Scopigno.Metro:Measuring Error on Simplified Surfaces[J].Computer Graphics Forum (S0167-7055),1998,17(2):167-174.

二级参考文献37

  • 1赵惠芳,阮秋琦.基于二次误差测度的带属性三角网格简化算法[J].中国铁道科学,2005,26(1):78-82. 被引量:4
  • 2[1]M.Levoy,K.Pulli,B.Curless,S.Rusinkiewicz,et al.The Digital Michelangelo Mathematics Project:3D scanning of large statues.[C]//Computer Graphics (SIGGRAPH'00),2000:131-144.
  • 3[3]G.Turk.Re-Tilling Polygonal Surfaces[J].Computer Graphics (SIGGRAPH'92 Proceeding),1992:55-64.
  • 4[4]J.Rossignac,P.Borrel.Multi-resolution 3D Approximation for Rendering Complex Scenes[C]//In Second Conference on Geometric Modeling in Computer Greaphics,1993:453-465.
  • 5[5]H.Hoppe,T.DeRose,T.Duchamp,et al.Mesh Optimization[C]//Computer Graphics (SIGGRAPH'93 Proceeding),1993:19-26.
  • 6[6]W.J.Schroeder,J.A.Zarge,W.E.Lorensen.Decimation of Triangel Meshes[C]//Computer Graphics (SIGGRAPH'92 Proceeding),1992:65-70.
  • 7[7]Hoppe.Progressive Meshes[C]//Computer Graphics(SIGGRAPH'96 Proceeding),1996:99-108.
  • 8[8]R.Ronfard,J.Rossignac.Full-range Approximation of Triangulated Polyhedra[C]//Computer Graphics Forum (EUROGRAPHICS'96 Proceedings),1996:67-76.
  • 9[9]M.Garland,P.S.Heckbert.Surface Simplification Using Quadric Error Metrics[C]//Computer Graphics (SIGGRAPH'97 Proceeding),1997:209-216.
  • 10[10]L.Kobbelt,S.Campagna,H.P.Seidel.A General Framework for Mesh Decimation[C]//Graphics Interface'98 Proceedings,1998:43-50.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部