摘要
在流固耦合的工程实际问题中的大多数情况下,弹性薄壁构件的变形为几何非线性,再加上流体方程的非线性,将导致流体和弹性体相互作用界面上的强非线性。在界面上便可以结合拉格朗日法和欧拉法建立方程和接触条件。其方法主要有单一拉格朗日法、单一欧拉法、相容拉格朗日-欧拉法和任意拉格朗日-欧拉法四种方法。引入描述弹性体变形特征的数值m、n、k和描述流体运动特征的数值λ、ν,可将流固耦合问题进行分类。在流体弹性力学理论的基础上,介绍了流固耦合问题界面相互作用的描述方法,并根据诺沃日洛夫BB(НовожиловВВ)在非线性弹性力学中,从几何非线性方面对弹性力学问题的分类方法出发,对流体弹性力学中的流固耦合问题进行分类,由此,可为按类别对运动学条件、动力学条件及界面上的接触条件进行相应的简化提供可靠的依据。
In most practical engineering projects on fluid-solid interaction, the deformation of thin elastic component is geometrically nonlinear, and the equations for fluid are also nonlinear, hence there exist strong nonlinearity on the interface between the fluid and the elastic body. The equations and contact conditions are established by combining Lagrangian and Eulerian methods on the interface. There exist four approaches: single Lagrangian method, single Eulerian method, compatible Lagrangian-Eulerian method and arbitrary Lagrangian-Eulerian method. The fluid-solid interaction can be classified through m, n, k for describing the characteristics of elastic deformation and λ v for expressing the trait of flow. Based on theory of fluid elastic mechanics, the description method for fluid-solid interaction is presented, and the corresponding classification method is established from the perspective of geometrical nonlinearity using the non-linear elasticity theory by V.V. Novojilov. The simplification for contact condition, kinematic condition and dynamic condition on the interface is credible.
出处
《工程力学》
EI
CSCD
北大核心
2007年第10期92-99,共8页
Engineering Mechanics
基金
国家自然科学基金资助项目(50275128)
关键词
流固耦合
相容拉格朗日-欧拉法
单一拉格朗日法
任意拉格朗日-欧拉法
几何非线性
分类简化准则
fluid-solid interaction
bending deformation
distribution of the internal force
compatible Eulerian- Lagrangian method
a thin cylindrical shell
fluid-elasticity parameter