期刊文献+

基于面向对象方法的IKONOS影像城市植被信息提取 被引量:16

Detecting urban vegetation categories based on object-oriented method from IKONOS data
在线阅读 下载PDF
导出
摘要 根据城市植被在IKONOS影像上的光谱、纹理、几何和位置响应特征,采用面向对象的方法对城市植被进行分类.首先,利用NDVI和蓝波段光谱响应值的阈值将实验区分割为植被和非植被区,然后针对植被区利用区域增长算法进行二级分割,生成植被对象;根据植被在IKONOS上的响应特征,选择形状指数、亮度值、绿波段的最大差值、红波段的平均值、近红外波段的比率、近红外波段的方差和对象重心的位置,即横纵坐标以及Homogeneity指数等9个指标构建特征空间;在此基础上,利用最大似然法识别城市植被类型,并利用专家知识对分类结果进行再组合.研究表明,利用这种方法获得的城市植被信息总精度达到87.37%,Kappa系数达到0.8267.  Based on urban vegetation characteristics of spectrum,texture,geometry and location,the object-oriented method was used to identify urban vegetation categories from IKONOS imagery.Firstly,vegetated area and non-vegetated area were separated by the threshold of NDVI and digital number(DN)value of blue band,and further,region growing method was adopted to segment the vegetated area into "objects",which represent the aggregation of pixels adjacent in location and in DN value.Secondly,9 features of form index,bright,maximum spectral difference of green band,mean spectral value of red band,ratio of near-infrared band,the standard deviation of near-infrared band,x,y and Homogeneity,were selected to construct feature space.Thirdly,objects were classified into five vegetation categories using maximum likelihood methods and expert knowledge,within the feature space.The overall accuracy of 87.37% and the Kappa coefficient of 0.8267 of the classification results showed the object-oriented method is useful to classify urban vegetation.
出处 《浙江大学学报(农业与生命科学版)》 CAS CSCD 北大核心 2007年第5期568-573,共6页 Journal of Zhejiang University:Agriculture and Life Sciences
基金 江苏省自然科学基金资助项目(BK2002420) 浙江省科技计划重点资助项目(2007C23089).
关键词 面向对象 城市植被 信息提取 object-oriented method urban vegetation information extraction
  • 相关文献

参考文献10

  • 1车生泉,王洪轮.城市绿地研究综述[J].上海交通大学学报(农业科学版),2001,19(3):229-234. 被引量:78
  • 2Scheiewe J,Tufte L,Ehlers M.Potential and problems of multi-scale segmentation methods in remote sensing[J].GeoBIT/GIS,2001,6:34-39.
  • 3高峻,宋永昌,张庆费.遥感和GIS支持下的城市植被制图及其特征分析[J].植物生态学报,2002,26(1):1-9. 被引量:22
  • 4Van Leeumen W J D,Huete A R,Laing T W.MODIS vegetation index composting approach:a prototype with AVHRR data[J].Remote Sensing of Environment,1999,69:264-280.
  • 5章毓晋.图像分割[M].北京:科学出版社,2001..
  • 6Definients Image GmbH.Ecognition User Guide[M].Germany,1999.
  • 7Chen D,Stow D A,Gong P.Examining the effect of spatial resolution and texture window size on classification accuracy:an urban environment case[J].International Journal of Remote Sensing,2004,25(11):2177-2192.
  • 8黄慧萍,吴炳方,李苗苗,周为峰,王忠武.高分辨率影像城市绿地快速提取技术与应用[J].遥感学报,2004,8(1):68-74. 被引量:129
  • 9吴连喜,王茂新.一种改进的最大似然法用于地物识别[J].农业工程学报,2003,19(4):54-57. 被引量:11
  • 10Smits P C,Dellepiane S G.Quality assessment of classification algorithms for land-cover mapping:a review and a proposal for a cost-based approach[J].International Journal of Remote Sensing,1999,20(8):1461-1486.

二级参考文献36

  • 1蒋高明.城市植被:特点、类型与功能[J].植物学通报,1993,10(3):21-27. 被引量:29
  • 2肖笃宁.宏观生态学研究的特点与方法[J].应用生态学报,1994,5(1):95-102. 被引量:37
  • 3刘青昊.城市形态的生态机制[J].城市规划,1995,19(2):20-22. 被引量:37
  • 4北京林学院.数理统计[M].中国林业出版社,1979..
  • 5遥感研究会(日)编 刘勇卫 贺雪鸿译.遥感精解[M].北京:测绘出版社,1993.200,288-289.
  • 6Iversen.G.R著 吴喜之 程博 柳林旭 等译.统计学[M].北京:高等教育出版社,2000.119~129.
  • 7[1]London Planning Advisory Committee. Open Space Planning in London[M]. London:Artillery House, 1992.
  • 8[2]Auvip Heckscher. Open Space-the Life of American City[M]. New York:Harper & Row,1984.
  • 9[3]高原荣重(杨增志,阎德藩,纪昭民,等译).城市绿地规划[M].北京:中国建筑工业出版社,1983.
  • 10[9]Benevolo. Leonardo. The History of the City[M]. London:Scolar Press, 1980.

共引文献810

同被引文献193

引证文献16

二级引证文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部