期刊文献+

基于RBF神经网络的井眼方位角误差建模及补偿 被引量:4

Azimuth Error Modeling and Compensation of Drilling Trajectory Using Radial Basis Function Neural Network
在线阅读 下载PDF
导出
摘要 对于陀螺钻井测斜技术而言,由于惯性器件本身误差及井下恶劣条件带来的干扰均具有复杂性,误差补偿是影响测量精度的关键因素。在阐述陀螺测斜原理、分析测斜系统可能产生的各种误差的基础上,进行了测斜仪转台实验,并采用神经网络中的径向基函数理论建立了井眼方位角误差模型,将其建模性能指标与双线形插值建模指标进行综合对比,结果表明RBF网络建模时间短、拟合性能好、预测能力强、补偿后方位角误差得到有效抑制、补偿精度高,各项指标均优于双线形插值方法。 As for the gyroscopic survey technology, because of the complicacy of the inertia components themselves and the environment underground, error compensation is the main influence factor of the surveying accuracy, After analyzing the surveying principle and kinds of error factors, the experiment process based on the gyro calibration system was proposed and the radial basis function (RBF) neural network was used to model and compensate the azimuth error of the system, The modeling performances of RBF approach and the bilinear interpolation were synthetically compared, The test result shows that RBF network model makes more accurate predictions and compensation with less modeling time, and the azimuth error is restrained more effectively than the bilinear model.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第17期4097-4100,共4页 Journal of System Simulation
基金 国家自然科学基金资助项目(50674005) 国防科技重点实验室基金资助项目(51487040105HK0101)
关键词 陀螺测斜 误差补偿 径向基函数 双线性插值 gyroscopic survey error compensation Radial Basis Function bilinear interpolation
  • 相关文献

参考文献9

二级参考文献29

  • 1吴玮,吕俊平.磁性测斜仪的误差分析[J].惯导与仪表,1996(4):53-56. 被引量:1
  • 2余永权.89系列Flash单片机原理及应用[M].北京:电子工业出版社,1997..
  • 3杨永耀 吕永哉.钢坯加热炉计算机控制动态数学模型的开发[J].自动化学报,1987,13(4):257-264.
  • 4A Jonathan Howell,Hilary Buxton.Learning identity with radial basis function networks [J].Neurocomputing,1998,20:15-34.
  • 5Chen S,Cowan C F N,Grant P N.Orthogonal least squares learning algorithms for radial basis function networks[J].IEEE Trans.Neural Networks.1991,2(2):302-309.
  • 6Orr M J L.Regularization in the selection of radial basis function centers[J].Neural Computation,1995,7:606-623.
  • 7Joannou D,Huda W,Laine A F.Circle Recognition through a 2D Hough transform and radius histogramming[J].Image and vision computing,1999,17:15-26.
  • 8[7]Chen S, Cowan C F N, Grant P M. Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks [J]. IEEE Transactions on Neural Networks, 1991, 2(2): 302-309.
  • 9[1]He W. Operating Characteristics of a Molten Carbonate Fuel Cell Power-Generation Syatems [J]. International Journal of Energy Research, Res 23, 1999, 1331-1344.
  • 10[2]CAO Guang-yi, Masumi Masubuchi. Dynamic Modeling and Response in Molten Carbonate Fuel Cell [J]. Transactions of the Japan Society of Mechanical Engineers (JSME), 1991, 57, 535(B), 837-842.

共引文献101

同被引文献29

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部