期刊文献+

一类组合两步连续RK-Rosenbrock方法

A Class of Combined Two-Step Continuity RK-Rosenbrock Methods
在线阅读 下载PDF
导出
摘要 对于一个大的刚性延迟微分方程系统,除了延迟分量给予系统影响外,还常常会出现系统的解分量有的变化很快,而有的变化很慢的情况。此时,可以把大的刚性延迟微分方程系统分解成为两个耦合的子系统,一个是描述系统快变部分的刚性延迟子系统,另一个是描述系统慢变部分的非刚性延迟子系统。对于分解的刚性延迟微分方程大系统,构造了一类用于求解刚性延迟微分方程的组合两步连续RK-Rosenbrock方法,讨论了方法的构造,方法的阶条件,证明了方法的收敛性,分析了方法的稳定性,数值试验表明方法是有效的。 Some solution of stiff delay differential equations change fast and others change slowly. The system could be partitioned into two coupling subsystems, one for stiff delay differential equations and the other for non-stiff delay differential equations. A class of combined two-step continuity RK-Rosenbrock methods was constructed for solving stiff singular and stiff nonsingular delay differential equations respectively toward a partitioned system of stiff delay differential equations. Two-step Runge-Kutta methods were used for solving nonstiff delay subsystem and two-step Rosenbrock methods were used for solving stiff delay subsystem. The construction, order conditions, numerical stability and convergence of the methods were studied. Numerical experiments show that the methods are efficient,
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第17期3945-3948,共4页 Journal of System Simulation
关键词 刚性延迟微分方程 两步连续RK-Rosenbrock方法 数值稳定性分析 收敛性 stiff delay differential equations Two-step continuity RK-Rosenbrock methods analysis of numerical stability convergence
  • 相关文献

参考文献6

二级参考文献29

  • 1N.H.Abel,Untersuchngen über die Reihe,Crelle J.f.d.r.u.angew.Math,1 (1826),311-339.
  • 2W.H.Enright and Min Hu,Interpolating Runge-Kutta methods for vanishing delay differential equations,Computing,55 (1995),223-236.
  • 3C.T.H.Baker,C.A.H.Paul,parallel continuous Runge-Kutta methods and vanishing lag delay differential equations,Adv.Comput.Math,1 (1993),367-394.
  • 4E.Hairer,G.Wanner,Order conditions for general Two-Step Runge-Kutta Methods,SIAM J.Num.Anal,34 (1997),2087-2089.
  • 5E.Hairer,S.P.Norsett and G.Wanner,Solving Ordinary Differential Equations I.Nonstiff problems,Springer Series in Computational Mathematics 8,Springer-Verlag Berlin Heidelberg,1987,second Revised Edition,1993.
  • 6W.H.Enright, Min Hu. Interpolating Runge-Kutta methods for vanishing delay differential equations[J]. computing, 1995,55: 223-236.
  • 7C.T.H. Baker,C.A.H. Paul,parallel continuous Runge-Kutta methods and vanishing lag delay differential equations[J]. Adv. Comput. Math. 1993, 1:367-394.
  • 8E.Hairer, G.Wanner. Order conditions for general Two-Step Runge-Kutta Methods[J]. SIAM J. Num. Anal. 1997,34:2087-2089.
  • 9E.Hairer, S.P.N·rsett, G.Wanner. Solving Ordinary Differential Equations I[M]. second Revised Edition, Nonstiff problems, Springer Series in Computational Mathematics 8, Springer-Verlag Berlin Heidelberg, 1987, 1993.
  • 10N.H.Abel, Untersuchngen über die Reihe[J]. Crelle J.f.d.r.u.angew. Math., 1826,1:311-339.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部