期刊文献+

互补问题中无SLC限制的内点算法

An interior-point arithmetic on complementarity problem without Lipschitz norm condition
在线阅读 下载PDF
导出
摘要 针对互补问题提出了一种无SLC限制的内点算法,仅要求线性函数F(x)=Hx+q中的F是一个P*(τ)函数,不需要满足范数Lipschitz条件.并对该算法的全局收敛性做了证明。 This paper presents an interior-point arithmetic on complementarity problem without Lipschitz norm condition. It only needs F of the linear function F(x)=Hx+q is a function, but not needs to satisfy Lipschitz norm condition. This arithmetic's globe convergence property has been proved.
出处 《海军工程大学学报》 CAS 北大核心 2007年第4期30-32,41,共4页 Journal of Naval University of Engineering
基金 河南省自然科学基金资助项目(0511012000)
关键词 互补问题 SLC限制 Lipschitz范数 内点算法 complementarity problem Lipschitz norm condition Lipschitz norm interior-point arith-metic
  • 相关文献

参考文献6

二级参考文献11

  • 1朱昌铭,金永杰.一种基于虚功原理的求解弹塑性问题的有限元——数学规划法[J].应用数学和力学,1993,14(7):601-608. 被引量:1
  • 2寇述舜,凸分析与凸二次规则,1994年
  • 3Xu S, Burke J. A Non-interior Predictor-corrector Path-following Algorithm for the Monotone Linear Complementarity Problem [J]. Mathematical Programming,2000,87:113-130.
  • 4Qi H D. On Minizing and Stationary Sequences of a New class of Merit functions for Monlinear Complementrity Problems [J]. JOTA,1999,102:411-431.
  • 5Yamashita N, Taji k, Fukushima M. Unconstrained Optimization Reformulations of Variational Inequality Problems [J]. JOTA,1997,92:439-456.
  • 6Peng J M. Global method for Monotone Variational Inequality Problems With Inequality Constraints [J]. JOTA,1997,95:419-430.
  • 7Peng J M. Derivative-Free Methods for Montone Variational Inequality and Complementarty problems[J]. JOTA,1998,99:253-252.
  • 8Xu S. The Global Linear Convergence of an Infeasible Noninterior Path-following Algorithm for Complementarity Problems With Uniform P-functions[J]. Mathematical Programming,2000,87:501-517.
  • 9Kanzow C. Nonliner Complementarity as Unconstraine Optimization[J]. JOTA,1996,88:139-155.
  • 10Chen B, Chen X, Kancow C. A Pennalized Fischer-Burmeister NCP-function[J]. Mathematical Programming, 2000,88:212-216.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部