期刊文献+

基于数据回归建模的单目视觉测距算法 被引量:19

Monocular vision distance detection algorithm based on data regression modeling
在线阅读 下载PDF
导出
摘要 提出了一种基于数据回归建模的单目视觉测距算法,其基本思路与现有的"先建模再测距"的顺序思路不同,创新性地提出了"先测距再建模"的逆向思路,首先准确标定出一些距离样本点,然后采用数据回归建模的方法建立测距模型。该方法不用再单独考虑成像模型、成像系统误差、透镜畸变等带来的影响,而是在进行回归拟合时隐含地加以解决;同时,该方法不依赖于道路几何约束条件,既可用于高速公路等结构化公路情况,又可用于城区公路等非结构化公路情况。实验表明,该算法思路是有效的,能满足测距的实时性与精确性要求。 On the basis of detailed analysis of existent vision-based distance detection algorithm,this paper presents a monocular vision distance detection algorithm based on data regeression modeling.Differing from the existent strategy of "first modeling then detection" , this paper creatively presents a strategy of "first detection then modeling".Firstly,the method accurately calibrates a few distance samples,then applies data regression modeling to build the distance detection modeling.The method impliedly sloves the affections about imaging modeling,imaging system errors,lens distortion,etc.In the process of regression modeling,other than researches about these questions individually.In addition,the method is independent of the geometrical constraint of the lane,so the method not only can be applied to structed road such as freeway,but also to urban unstructed road.The experimental results show that the algorithm is effective,and satisfy the real-time and accurate requirements of distance detection.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第24期15-18,40,共5页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.69674012) 重庆市科委自然科学基金(the Natu-ral Science Foundation of CQ CSTC under Grant No.2006BA6016)
关键词 智能汽车单目视觉数据回归测距 intelligent vehicle monocular vision data regression distance detection
  • 相关文献

参考文献9

二级参考文献51

  • 1罗飞路,姬涛,陈棣湘.一种摄像机成像误差的程序化修正方法[J].国防科技大学学报,1997,19(1):77-82. 被引量:3
  • 2罗飞路,傅恩锡.CCD摄像机内外部参数快速准确的标定方法[J].湖南大学学报(自然科学版),1997,24(2):71-74. 被引量:15
  • 3章毓晋.图像处理与分析[M].北京:清华大学出版社,2000..
  • 4[1]Broggi A. Vision-based driving assistance[J]. IEEE Expert,Intelligent System & Their Application, 1998, 13(6): 22~23.
  • 5[2]Murphy R R. Sensor and information fusion for improved visionbased vehicle guidance[J]. IEEE Expert, Intelligent System & Their Application, 1998, 13(6): 49~56.
  • 6[3]Bertozzi M, Broggi A. GOLD: A parallel real-time stereo vision system for generic obstacle and lane detection [J]. IEEE Transactions on Image Processing, 1998,7(1):62~81.
  • 7[4]Morizet-Mahoudeaux P. On-board and real-time expert control [J]. IEEE Expert, Intelligent System & Their Application,1996,11(4): 71~81.
  • 8[5]Thorpe C, Hebert M H. Vision and navigation for the carnegiemellon navlab[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(3): 362~373.
  • 9[6]Turk M A, Morgenhaler D G. VITS-A vision system for autonomous land vehicle navigation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(3): 342~361.
  • 10[7]Kuan D, Phipps G. Autonomous robotic vehicle road following [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(5): 648~658.

共引文献184

同被引文献146

引证文献19

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部