期刊文献+

一种高效的面向轻量级入侵检测系统的特征选择算法 被引量:46

An Efficient Feature Selection Algorithm Toward Building Lightweight Intrusion Detection System
在线阅读 下载PDF
导出
摘要 特征选择是网络安全、模式识别、数据挖掘等领域的重要问题之一.针对高维数据对象,特征选择一方面可以提高分类精度和效率,另一方面可以找出富含信息的特征子集.文中提出一种wrapper型的特征选择算法来构建轻量级入侵检测系统.该算法采用遗传算法和禁忌搜索相混合的搜索策略对特征子集空间进行随机搜索,然后利用提供的数据在无约束优化线性支持向量机上的平均分类正确率作为特征子集的评价标准来获取最优特征子集.文中按照DOS,PROBE,R2L,U2R4个类别对KDD1999数据集进行分类,并且在每一类上进行了大量的实验.实验结果表明,对每一类攻击文中提出的特征选择算法不仅可以加快特征选择的速度,而且基于该算法构建的入侵检测系统在建模时间、检测时间、检测已知攻击、检测未知攻击上,与没有运用特征选择的入侵检测系统相比具有更好的性能. Feature selection is one of the most important problems in network security, pattern recognition and data mining areas. For high dimension data, feature selection not only can im- prove the accuracy and efficiency of classification, but also discover informative subset. This paper proposes a new feature selection algorithm aiming at building lightweight intrusion detection system (IDS) by (1) using a hybrid strategy of genetic algorithm and tabu search (GATS) as search strategy to specify a candidate subset for evaluation; (2) using modified linear Support Vector Machines (SVMs) iterative procedure as wrapper approach to obtain the optimum feature subset. The authors have examined the feasibility of the feature selection algorithm by conducting several experiments on KDD1999 intrusion detection dataset which was categorized as DOS, PROBE, R2L and U2R. The experimental results show that the approach is able not only to speed up the process o~ selecting important features but also to guarantee high detection rates. Furthermore, the experiments indicate that intrusion detection system with a combination of feature selection algorithm has better performances than that without feature selection algorithm in terms of building time, testing time and detection rates.
出处 《计算机学报》 EI CSCD 北大核心 2007年第8期1398-1408,共11页 Chinese Journal of Computers
基金 国家"九七三"重点基础研究发展规划项目基金(2004CB318109) 国家信息安全计划项目基金(2005C39)资助~~
关键词 特征选择 遗传算法 禁忌搜索 线性支持向量机 入侵检测系统 feature selection genetic algorithm tabu search~ linear support vector machines intrusion detection system
  • 相关文献

参考文献26

  • 1Forres S,Perelson A S,Allen L et al.Self-nonself discrimination in a computer//Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy.Los Alamitos:IEEE Computer Society Press,1994:120-128
  • 2Kohavi R,John G H.Wrappers for feature subset selection.Artificial Intelligence,1997,97(1-2):275-324
  • 3Park Jong Sou,Shazzad K M,Kim D S.Toward modeling lightweight intrusion detection system through correlationbased hybrid feature selection//Feng D,Lin D,Yung M eds.Proceedings of the CISC.Heidelberg:Springer-Verlag,2005:279-289
  • 4Jain A K,Zongker D.Feature selection:Evaluation,application,and small sample performance.IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19 (2):153-158
  • 5Kudo M,Sklansky J.Comparison of algorithms that select features for pattern classifiers.Pattern Recognition,2000,33(1):25-41
  • 6Holland J.Adaptation in Natural and Artificial Systems.Ann Arbor:The University of Michigan Press,1975
  • 7Glover F.Future paths for integer programming and links to artificial intelligence.Computers and Operations Research,1986,13(4):533-549
  • 8Vapnik V.The Nature of Statistical Learning Theory.New York:Springer Verlag,1995
  • 9Grandvalet Y,Canu S.Adaptive scaling for feature selection in SVMs//Advances in Neural Information Processing Systems.Cambridge,Massachusetts:MIT Press,2003,15:553-560
  • 10Cao L J,Chua K S,Chong W K,Lee H P,Gu Q M.A comparison of PCA,KPCA and ICA for dimensionality reduction in support vector machine.Neuron Computing,2003,55(1-2):321-336

二级参考文献11

共引文献341

同被引文献403

引证文献46

二级引证文献234

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部