期刊文献+

基于双正交小波包的图像压缩研究 被引量:2

The Study of Image Compression Based on Biorthogonal Wavelet Packet
在线阅读 下载PDF
导出
摘要 介绍了小波变换的图像压缩模型和小波包在图像压缩中的优势,深入研究了双正交小波包在图像压缩中的分解与重构算法,构造了基于Shannon熵准则的双正交小波最优基,并应用MATLAB软件进行仿真实验,分析比较了双正交小波包和haar小波在指纹图像压缩中的性能,表明双正交小波包在边缘突变检测方面具有优良的性能。 Abstract:The model of image compression based on wavelet transform and superiority of wavelet packet in image compression are introduced, algofithrns of image decomposition and reconstruction based on biorthogonal wavelet packet are studied deeply, best basis of bioahogonal wavelet packet based on Shannon entropy is constructed, and simulated by using MATALAB7 This paper also analyzed and compared biorthogonal wavelet packet with Haar wavelet in the application of fingerprint image compression, The comparative result indicates biorthogonal wavelet packet has nicer performance in abrupt change of edges detection.
出处 《长春师范学院学报(自然科学版)》 2007年第3期24-28,共5页 Journal of Changchun Teachers College
关键词 双正交小波 小波包 图像压缩 Shannon熵 最优基 MATLAB7 biorthogonal wavelet wavelet packet image compression shannon entropy best basis MATLAB7
  • 相关文献

参考文献10

  • 1[2]徐佩霞.小波分析与应用实例[M].安徽:中国科学技术大学出版社,2001,161-164.
  • 2[3]李弼程.小波分析与应用[M].北京:电子工业出版社,2005,77-104.
  • 3[4]Sweldens W.The lifting scheme:a new philosophy in biorthogonal wavelet constructions[J].Proc.SPIE,1995,2569:68-79.
  • 4[5]Sweldens W.The lifting scheme:a custom-design construction of biorthogonal wavelet[J].Appl.Comput.Harmonic analysis,1996,3(2):186-200.
  • 5[6]Wicherhauser M.V.Acoustic signal compression with wavelet packet[J].in Chui C Ked.:Wavelet:a tutorial in theory and application,London:Academic Press,1992.
  • 6[8]Lewis A.S.,Knowles G.Image compression using the 2-D wavelet transform[J].IEEE Transactions on Image Processing,1992,1(2):244-250.
  • 7[9]Vaidyanathan p.p.Orthonormal,Biorthonormal filter banks as convolvers,and convolutional coding gain[J].IEEE Transactions on Signal Processing,1993,41(6):2110-2129.
  • 8[10]Phoong S.M.,Kim C.W.Vaidyanathan P.P.,Ansari R.A new class of two-channel biorthogonal filter banks and wavelet bases[J].IEEE Transactions on Signal Processing,1995,43(3):649-665.
  • 9[11]Coifman R.R.,Wickerhauser M.V.Entropy-based algorithms for best basissele ction[J].IEEE Transactions on Information Theroy,1992,38(2):713-718.
  • 10[12]Strintzis M.G.Optimal Biorthogonal wavelet bases for signal decomposition[J].IEEE Transactions on Image processing,1996,44(6):1406-1416.

同被引文献12

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部