期刊文献+

基于SOM的入侵检测算法的特征选择 被引量:3

Feature selection of SOM-based intrusion detection algorithm
在线阅读 下载PDF
导出
摘要 针对基于单层SOM神经网络的入侵检测系统计算量大、误报率高的问题,利用SOM网络中相似模式激活神经元的物理位置邻近的特点,根据输入模式的类型,对激活的神经元进行划分,并把记录的基本特征和推导特征结合起来,对记录进行分类.研究结果表明,较小的特征子集能使系统更快地对数据进行分类,与传统的利用单层SOM神经网络方法相比,该方法计算量小、误报率低. The characteristic that similar patterns activate the neighboring neurons is used to classify the records. The activated neurons were classified according to the types of the records. Using appropriate combination of basic features and derived features is proposed to reduce false positive rate and computation of single-layer SOM-based intrusion detection system. The result shows that the smaller subset of features can make the system classify the records faster. This method has the advantage of less computation and lower false positive rate comparing that of using traditional single layer SOM neural network.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第7期5-7,共3页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
关键词 入侵检测 神经网络 特征 自组织特征映射 intrusion detection neural network feature self-organizational characteristic map (SPM)
  • 相关文献

参考文献6

  • 1肖道举,毛辉,陈晓苏.BP神经网络在入侵检测中的应用[J].华中科技大学学报(自然科学版),2003,31(5):6-8. 被引量:23
  • 2王景新,戴葵,宋辉,王志英.基于神经网络的入侵检测系统[J].计算机工程与科学,2003,25(6):28-31. 被引量:16
  • 3Kemmerer R A,Vigna G.Intrusion detection a brief history and overview[J].IEEE Computer Supplement,Security & Privacy,2002,35(4):27-30.
  • 4Rumelhart D E,Hinton G E,Williams R J.Learning representation by backpropagation errors[J].Nature,1986,323(9):533-536.
  • 5Kayacik H G,Heywood A N Z,Heywood M I.On the capability of an SOM based intrusion detection system[J]//Proceedings of the International Joint Conference on Neural Networks(IJCNN'03),2003(3):1 808-1 813.
  • 6Suseela T S,Qiuming A Z,Julie H.Hierarchical kohonen met for anomaly detection in network security[J].IEEE Transactions on Systems,Man,and Cybernetics,2005,35(2):302-312.

二级参考文献4

  • 1Lunt T. A survey of intrusion detection techniques.Computers and Security, 1993, 12. 405-418.
  • 2Jain A, Mao J, Mohiuddin K M. Artificial neural networks: a tutorial. IEEE Computer, 1996, 29(3):31 -33.
  • 3Lane T, Brodley C. An application of machine learning to anomaly detection, in: Stephen B ed. The 20th National Information Systems Security Conference. Baltimore, 1997. Baltimore: Boulder. CO, 1997. 366-377.
  • 4江虹,曾立波,胡继明.优化的BP神经网络分类器的设计与实现[J].计算机工程与应用,2001,37(5):122-125. 被引量:32

共引文献34

同被引文献20

引证文献3

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部