期刊文献+

大容量蓄电池组的数学建模及参数辨识 被引量:5

Research on mathematic model and parameter identification of high-capacity storage battery
在线阅读 下载PDF
导出
摘要 建立了铅酸蓄电池组的数学模型,采用对大容量铅酸蓄电池组进行突加扰动的试验方法,对不同容量的蓄电池组开展了实验研究,验证了所建模型并辨识出蓄电池组的参数。通过对不同状态的蓄电池组的参数辨识,发现其参数几乎不变。 The mathematic model and parameter identification of high-capacity lead-acid storage battery are difficult to obtain for a long period. This paper deals with the experimental method of adding the disturbance suddenly for high-capacity lead-acid storage battery. The basic mathematic model and parameters of high-capacity lead-acid storage battery are obtained by measuring dynamic voltage and raising rate of current and steady values. The mathematic model is improved by analysing the surge process of initial current and voltage.
出处 《海军工程大学学报》 CAS 北大核心 2007年第3期35-38,共4页 Journal of Naval University of Engineering
基金 湖北省自然科学基金资助项目(2004ABA026)
关键词 蓄电池组 数学模型 参数辨识 storage battery mathematic model parameter identification
  • 相关文献

参考文献6

二级参考文献33

共引文献121

同被引文献54

  • 1王帅,庄劲武,董润鹏,雷冉,刘思奇.基于半经验模型的熔断器燃弧过程计算与分析[J].高电压技术,2020,46(1):319-326. 被引量:9
  • 2徐国顺,庄劲武,杨锋,毛海涛.大容量蓄电池组的数学建模及短路特性研究[J].低压电器,2006(11):18-21. 被引量:4
  • 3徐正喜,姜波,魏华,赵凡琪.大容量铅酸蓄电池组短路特性分析研究[J].船电技术,2007,27(4):221-226. 被引量:3
  • 4QIU Wang-biao,QIU Zhi-yuan.Design for Symmetrical Management of Storage Battery Expert System based on Single Battery[C]//Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation.Luoyang,China:[s.n.],2006:1141-1146.
  • 5AND(O) B,SAVALLI N.CAN bus networked sensors use in orientation tools for the visually impaired wired versus wireless technology[J].IEEE Instrumentation & Measurement Magazine,2008,11 (2):49-52.
  • 6HANSSON H A,NOLTE T,NORSTROM C,et al.Integrating reliability and timing analysis of CAN-based systems[J].IEEE T.Industrial Electronics,2002,49(6):1240-1250.
  • 7ANTHONY P L,CRAWLEY H B,FISCHER P A,et al.CANbus and microcontroller use in the babar dector at SLAC[J].IEEE Transactions on Nuclear Science,2000,47(2):166-169.
  • 8NASA NEWS RELEASE 2007-040[EB/OL].http://ti.arc.nasa.gov/tech/dash/diagnostics-and-prognostics/battery-prognostics/motivation/.
  • 9Kozlowski J.D,Byington C.S,et al.Model-based Predictive Diagnostics for Electrochemical Energy Sources[A].IEEE Proceedings of the Aerospace Conference[C].2001,6:3149-3164.
  • 10Saha B,Goebel K,Poll S,et al.Prognostics Methods for Battery Health Monitoring Using a Bayesian Framework[J].IEEE Transactions on Instrumentation and Measurement,2009,58(2):291-296.

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部